SimpleStudy Schools Book a Demo We can give expert advice on our plans and what will be the best option for your school.
Parents Pricing Home NSC Civil Technology Civil Services Basic and advanced technical drawings Figuur 5.1 hieronder toon 'n gevormde lamel met 'n gelyksydige driehoekige gat
Figuur 5.1 hieronder toon 'n gevormde lamel met 'n gelyksydige driehoekige gat - NSC Civil Technology Civil Services - Question 5 - 2016 - Paper 1 Question 5
View full question Figuur 5.1 hieronder toon 'n gevormde lamel met 'n gelyksydige driehoekige gat. Alle afmetings is in millimeter.
Bestudeer die lamel en antwoord die vrae wat volg d... show full transcript
View marking scheme Worked Solution & Example Answer:Figuur 5.1 hieronder toon 'n gevormde lamel met 'n gelyksydige driehoekige gat - NSC Civil Technology Civil Services - Question 5 - 2016 - Paper 1
Bereken die oppervlakte van deel 1. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Die oppervlakte van deel 1 kan bereken word deur die formule vir 'n reghoek toe te pas:
O p p e r v l a k t e = L e n g t e i m e s B r e e d t e = 90 e x t m m i m e s 30 e x t m m = 2700 e x t m m 2 Oppervlakte = Lengte imes Breedte = 90 ext{ mm} imes 30 ext{ mm} = 2 700 ext{ mm}^2 Opp er v l ak t e = L e n g t e im es B ree d t e = 90 e x t mm im es 30 e x t mm = 2700 e x t mm 2
Bereken die oppervlakte van deel 2. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Die oppervlakte van die driehoekige deel 2 kan bereken word met die formule:
O p p e r v l a k t e = 1 2 × B a s i s × H o o g t e = 1 2 × 60 e x t m m × 60 e x t m m = 1800 e x t m m 2 Oppervlakte = \frac{1}{2} \times Basis \times Hoogte = \frac{1}{2} \times 60 ext{ mm} \times 60 ext{ mm} = 1 800 ext{ mm}^2 Opp er v l ak t e = 2 1 × B a s i s × Hoo g t e = 2 1 × 60 e x t mm × 60 e x t mm = 1800 e x t mm 2 .
Bereken die oppervlakte van deel 3. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Die oppervlakte van deel 3 is eenvoudig die oppervlakte van 'n reghoek:
O p p e r v l a k t e = 15 e x t m m i m e s 30 e x t m m = 450 e x t m m 2 Oppervlakte = 15 ext{ mm} imes 30 ext{ mm} = 450 ext{ mm}^2 Opp er v l ak t e = 15 e x t mm im es 30 e x t mm = 450 e x t mm 2 .
Bereken die totale oppervlakte van die lamel. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Die totale oppervlakte is die som van die oppervlaktes van die drie dele:
T o t a l e e x t O p p e r v l a k t e = 2700 e x t m m 2 + 1800 e x t m m 2 + 450 e x t m m 2 = 5950 e x t m m 2 . Totale ext{ Oppervlakte} = 2 700 ext{ mm}^2 + 1 800 ext{ mm}^2 + 450 ext{ mm}^2 = 5 950 ext{ mm}^2. T o t a l ee x t Opp er v l ak t e = 2700 e x t mm 2 + 1800 e x t mm 2 + 450 e x t mm 2 = 5950 e x t mm 2 .
Bereken die posisie van die sentroid van deel 3 vanaf A–A. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Die sentroid van 'n reghoek is op die middelste punt van sy breedte:
x 3 = 15 e x t m m 2 = 7.5 e x t m m . x_{3} = \frac{15 ext{ mm}}{2} = 7.5 ext{ mm}. x 3 = 2 15 e x t mm = 7.5 e x t mm .
Die afstand vanaf A–A sal wees 30 mm + 7.5 mm = 37.5 mm.
Bereken die posisie van die sentroid van deel 1 vanaf B–B. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Die sentroid van deel 1 is op die middelste punt van die hoogte:
x 1 = 15 e x t m m + 30 e x t m m 2 = 30 e x t m m . x_{1} = 15 ext{ mm} + \frac{30 ext{ mm}}{2} = 30 ext{ mm}. x 1 = 15 e x t mm + 2 30 e x t mm = 30 e x t mm .
Die posisie vanaf B–B is nou 15 mm + 30 mm = 45 mm.
Bereken die posisie van die sentroid van deel 2 vanaf B–B. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Aangesien die hoogte van die driehoek deel 2 60 mm is:
x 2 = 60 e x t m m 3 = 20 e x t m m . x_{2} = \frac{60 ext{ mm}}{3} = 20 ext{ mm}. x 2 = 3 60 e x t mm = 20 e x t mm .
Die posisie vanaf B–B is 60 mm - 20 mm = 40 mm.
Bereken die posisie van die sentroid van deel 2 vanaf B–B. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Die posisie van die sentroid van deel 2 bly dieselfde as wat vroeër bereken is, wat 40 mm is.
Join the NSC students using SimpleStudy...97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;© 2025 SimpleStudy. All rights reserved