Photo AI

FIGURE 5.1 below shows a shaped lamina - NSC Civil Technology Civil Services - Question 5 - 2017 - Paper 1

Question icon

Question 5

FIGURE-5.1-below-shows-a-shaped-lamina-NSC Civil Technology Civil Services-Question 5-2017-Paper 1.png

FIGURE 5.1 below shows a shaped lamina. All dimensions are in millimetres. Study the lamina and calculate the centroid of the lamina from A-A. Round off your answer... show full transcript

Worked Solution & Example Answer:FIGURE 5.1 below shows a shaped lamina - NSC Civil Technology Civil Services - Question 5 - 2017 - Paper 1

Step 1

Calculate the Area of Each Section

96%

114 rated

Answer

To find the centroid of the shaped lamina, first, we need to determine the area of each individual section. The lamina consists of two trapezoidal parts: part 1 (top trapezium) and part 2 (bottom rectangle).

  • Area of Part 1 (A1):

    A1=(b1+b2)2×h=(30+15)2×45=1012.5 mm2A_1 = \frac{(b_1 + b_2)}{2} \times h = \frac{(30 + 15)}{2} \times 45 = 1012.5 \ mm^2

  • Area of Part 2 (A2):

    A2=b×h=60 mm×25 mm=1500 mm2A_2 = b \times h = 60 \ mm \times 25 \ mm = 1500 \ mm^2

Step 2

Calculate the Centroid of Each Section

99%

104 rated

Answer

Next, we compute the centroid (X) for each of the areas:

  • Centroid of Part 1 ( X1):

    X1=(b1+b2)2=(30+15)2=22.5 mmX_1 = \frac{(b_1 + b_2)}{2} = \frac{(30 + 15)}{2} = 22.5 \ mm

  • Centroid of Part 2 ( X2):

    Since this is a rectangle, the centroid is at half the width, hence:

    X2=30 mm+602=60 mmX_2 = 30 \ mm + \frac{60}{2} = 60 \ mm

Step 3

Compute the Total Centroid

96%

101 rated

Answer

Using the formula for the centroid:

X=(AX)AX = \frac{ \sum (A \cdot X)}{ \sum A}

Where:

  • Total Area =A1+A2=1012.5+1500=2512.5 mm2= A_1 + A_2 = 1012.5 + 1500 = 2512.5 \ mm^2
  • Contribution from Part 1:=A1X1=1012.522.5=22781.25 mm3= A_1 \cdot X_1 = 1012.5 \cdot 22.5 = 22781.25 \ mm^3
  • Contribution from Part 2:=A2X2=150060=90000 mm3= A_2 \cdot X_2 = 1500 \cdot 60 = 90000 \ mm^3

Now we can substitute these values into the centroid formula:

Xtotal=22781.25+900002512.541.15 mmX_{total} = \frac{22781.25 + 90000}{2512.5} \approx 41.15 \ mm

Finally, round off to two decimal places to get the final answer: 41.15 mm.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;