Photo AI

FIGURE 5.1 below shows a shaped lamina - NSC Civil Technology Construction - Question 5 - 2017 - Paper 1

Question icon

Question 5

FIGURE-5.1-below-shows-a-shaped-lamina-NSC Civil Technology Construction-Question 5-2017-Paper 1.png

FIGURE 5.1 below shows a shaped lamina. All dimensions are in millimetres. Study the lamina and calculate the centroid of the lamina from A-A. Round off your answer... show full transcript

Worked Solution & Example Answer:FIGURE 5.1 below shows a shaped lamina - NSC Civil Technology Construction - Question 5 - 2017 - Paper 1

Step 1

Calculate Areas and Centroid X Coordinates

96%

114 rated

Answer

For the lamina, divide the shape into two parts: Area 1 (rectangle) and Area 2 (triangle).

Area 1:

  • Dimensions: 30 mm × 45 mm
  • Area (A1) = base × height = 30mmimes45mm=1350mm230 \, mm imes 45 \, mm = 1350 \, mm^2

Area 2:

  • Base = 15 mm, Height = 15 mm
  • Area (A2) = 12×base×height=12×15×15=112.5mm2\frac{1}{2} \times base \times height = \frac{1}{2} \times 15 \times 15 = 112.5 \, mm^2

Centroid X Coordinates:

  • Centroid of Area 1 (X1): X1 = 302=15mm\frac{30}{2} = 15 \, mm
  • Centroid of Area 2 (X2): X2 = 15+152=22.5mm15 + \frac{15}{2} = 22.5 \, mm

Step 2

Determine the Total Area and Centroid Y Coordinate

99%

104 rated

Answer

Total Area (A):

  • Total area = A1 + A2 = 1350+112.5=1462.5mm21350 + 112.5 = 1462.5 \, mm^2

Centroid Y Coordinates:

  • Centroid of Area 1 (Y1): Y1 = 452=22.5mm\frac{45}{2} = 22.5 \, mm
  • Centroid of Area 2 (Y2): Y2 = 45+153=50mm45 + \frac{15}{3} = 50 \, mm

Step 3

Final Calculation for Centroid

96%

101 rated

Answer

Now compute the overall centroid (X, Y):

  • Total Moments about X-axis: Total Moment X=A1×Y1+A2×Y2=1350×22.5+112.5×50\text{Total Moment X} = A1 \times Y1 + A2 \times Y2 = 1350 \times 22.5 + 112.5 \times 50 =30375+5625=36000mm3= 30375 + 5625 = 36000 \, mm^3

  • Total Moment about Y-axis: Total Moment Y=A1×X1+A2×X2=1350×15+112.5×22.5\text{Total Moment Y} = A1 \times X1 + A2 \times X2 = 1350 \times 15 + 112.5 \times 22.5 =20250+2531.25=22781.25mm3= 20250 + 2531.25 = 22781.25 \, mm^3

  • Centroid coordinates:

  • Xˉ=TotalMomentYA=22781.251462.515.56mm\bar{X} = \frac{Total Moment Y}{A} = \frac{22781.25}{1462.5} \approx 15.56 \, mm

  • Yˉ=TotalMomentXA=360001462.524.59mm\bar{Y} = \frac{Total Moment X}{A} = \frac{36000}{1462.5} \approx 24.59 \, mm

Final centroid coordinates: (15.56, 24.59) rounded to (15.56, 24.59).

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;