Photo AI

5.1 Calculate the area of part 1 - NSC Civil Technology Construction - Question 5 - 2016 - Paper 1

Question icon

Question 5

5.1-Calculate-the-area-of-part-1-NSC Civil Technology Construction-Question 5-2016-Paper 1.png

5.1 Calculate the area of part 1. The area of part 1, which is a rectangle, can be calculated using the formula: $$ ext{Area} = ext{length} imes ext{width}$$ S... show full transcript

Worked Solution & Example Answer:5.1 Calculate the area of part 1 - NSC Civil Technology Construction - Question 5 - 2016 - Paper 1

Step 1

Calculate the area of part 1.

96%

114 rated

Answer

The area of part 1, which is a rectangle, can be calculated using the formula: Area=length×width\text{Area} = \text{length} \times \text{width} Substituting the values: Area1=90 mm×30 mm=2700 mm2\text{Area}_1 = 90 \text{ mm} \times 30 \text{ mm} = 2700 \text{ mm}^2

Step 2

Calculate the area of part 2.

99%

104 rated

Answer

Part 2 is a rectangle as well, so we use the same area formula: Area2=60 mm×60 mm=3600 mm2\text{Area}_2 = 60 \text{ mm} \times 60 \text{ mm} = 3600 \text{ mm}^2

Step 3

Calculate the area of part 3.

96%

101 rated

Answer

Part 3 is a smaller rectangle, and its area can be calculated as: Area3=15 mm×30 mm=450 mm2\text{Area}_3 = 15 \text{ mm} \times 30 \text{ mm} = 450 \text{ mm}^2

Step 4

Calculate the total area of the lamina.

98%

120 rated

Answer

To find the total area of the lamina, we can subtract the area of part 3 from the sum of areas of part 1 and part 2: Total Area=Area1+Area2Area3\text{Total Area} = \text{Area}_1 + \text{Area}_2 - \text{Area}_3 Total Area=2700 mm2+3600 mm2450 mm2=5850 mm2\text{Total Area} = 2700 \text{ mm}^2 + 3600 \text{ mm}^2 - 450 \text{ mm}^2 = 5850 \text{ mm}^2

Step 5

Calculate the position of the centroid of part 3 from A–A.

97%

117 rated

Answer

The centroid of part 3 can be determined based on its dimensions. Its distance from A–A is calculated as: Centroid=15 mm2=7.5 mm\text{Centroid} = \frac{15 \text{ mm}}{2} = 7.5 \text{ mm} Since it is 30 mm from A to the bottom, the centroid distance from A would be: DistanceAA=307.5=22.5 mm\text{Distance}_{A-A} = 30 - 7.5 = 22.5 \text{ mm}

Step 6

Calculate the position of the centroid of part 1 from B–B.

97%

121 rated

Answer

For part 1, the centroid can be found: Centroid1=30 mm2=15 mm\text{Centroid}_1 = \frac{30 \text{ mm}}{2} = 15 \text{ mm} Given that part 1 is 30 mm wide, the centroid will thus be: DistanceBB=3015=15 mm\text{Distance}_{B-B} = 30 - 15 = 15 \text{ mm}

Step 7

Calculate the position of the centroid of part 3 from B–B.

96%

114 rated

Answer

For part 3, we consider its width: Centroid3,BB=30 mm2=15 mm\text{Centroid}_{3,B-B} = \frac{30 \text{ mm}}{2} = 15 \text{ mm} Therefore, the distance from B would be: DistanceBB=15+15=30 mm\text{Distance}_{B-B} = 15 + 15 = 30 \text{ mm}

Step 8

Calculate the position of the centroid of part 2 from B–B.

99%

104 rated

Answer

Using the same method, for part 2: Centroid2=60 mm2=30 mm\text{Centroid}_{2} = \frac{60 \text{ mm}}{2} = 30 \text{ mm} So the distance from B will be: DistanceBB=6030=30 mm\text{Distance}_{B-B} = 60 - 30 = 30 \text{ mm}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;