SimpleStudy Schools Book a Demo We can give expert advice on our plans and what will be the best option for your school.
Parents Pricing Home NSC Civil Technology Woodworking Basic and advanced technical drawings 5.1 FIGUUR 5.1 hieronder toon 'n gevormde lamel met 'n gelykshidige driehoekige gat
5.1 FIGUUR 5.1 hieronder toon 'n gevormde lamel met 'n gelykshidige driehoekige gat - NSC Civil Technology Woodworking - Question 5 - 2017 - Paper 1 Question 5
View full question 5.1 FIGUUR 5.1 hieronder toon 'n gevormde lamel met 'n gelykshidige driehoekige gat. Alle afmetings is in millimeter.
Bestudeer FIGUUR 5.1 en antwoord die vrae deur... show full transcript
View marking scheme Worked Solution & Example Answer:5.1 FIGUUR 5.1 hieronder toon 'n gevormde lamel met 'n gelykshidige driehoekige gat - NSC Civil Technology Woodworking - Question 5 - 2017 - Paper 1
5.1.1 Oppervlakte van deel 1 Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Die oppervlakte van deel 1 kan bereken word as:
alfa = rac{1}{2} imes basis imes hoogte = rac{1}{2} imes 15 ext{ mm} imes 30 ext{ mm} = 225 ext{ mm}^2.
5.1.2 Oppervlakte van deel 2 sonder die gat Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Die totale oppervlakte van deel 2 sonder die gat kan bereken word as:
totaal ext{ oppervlakte} = lengte imes breedte = 90 ext{ mm} imes 15 ext{ mm} = 1350 ext{ mm}^2.
Aangesien die gat 'n oppervlakte van 225 mm² het, is die oppervlakte sonder die gat:
sonder die gat = 1350 ext{ mm}^2 - 225 ext{ mm}^2 = 1125 ext{ mm}^2.
5.1.3 Oppervlakte van deel 3 Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Die oppervlakte van deel 3 is 'n reghoek en kan bereken word as:
totaal ext{ oppervlakte} = hoogte imes basis = 90 ext{ mm} imes 15 ext{ mm} = 1350 ext{ mm}^2.
5.1.4 Totale oppervlakte van die lamel Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Die totale oppervlakte van die lamel is die som van die oppervlaktes van al drie dele:
totaal = P(deel1) + P(deel2) + P(deel3) = 225 ext{ mm}^2 + 1125 ext{ mm}^2 + 1350 ext{ mm}^2 = 2700 ext{ mm}^2.
5.1.5 Posisie van die sentroid van deel 1 vanaf A–A Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Die sentroid kan bepaal word deur die oppervlaktes en die posisies van deel 1 te gebruik. Dit is:
y_{ ext{sentroid}} = rac{ ext{Som van } ext{ A} imes y}{ ext{Totale oppervlakte}},
waar A die oppervlaktes en y die afstand is. So, vir deel 1 is:
y_{ ext{sentroid}} = rac{225 ext{ mm}^2 imes 15 ext{ mm}}{225 ext{ mm}^2} = 15 ext{ mm}.
5.1.6 Posisie van die sentroid van deel 3 vanaf A–A Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Om die sentroid van deel 3 te bereken, gebruik dieselfde metode:
y_{ ext{sentroid}} = rac{ ext{Som van } A imes y}{ ext{Totale oppervlakte}}.
Hier is:
y_{ ext{sentroid}} = rac{1350 ext{ mm}^2 imes 90 ext{ mm}}{1350 ext{ mm}^2} = 90 ext{ mm}.
5.1.7 Posisie van die sentroid van deel 2 vanaf B–B Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Die sentroid van deel 2 kan dieselfde manier bereken word, maar nou vanaf B–B:
y_{ ext{sentroid}} = rac{ ext{Som van } A imes y}{ ext{Totale oppervlakte}} = rac{1125 ext{ mm}^2 imes 30 ext{ mm}}{1125 ext{ mm}^2} = 30 ext{ mm}.
Join the NSC students using SimpleStudy...97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;© 2025 SimpleStudy. All rights reserved