Photo AI

Gegee: TR = 5 : 1 V1 = 2 000 V S = 50 kVA Puit = 45 kW Transformatorverliese = 500 W Bereken die: 4.7.1 Sekondêre fase spanning 4.7.2 Rendement van die transformator 4.7.3 Arbeidsfaktor van die transformator 4.7.4 Stroom deur die las getrek - NSC Electrical Technology Power Systems - Question 4 - 2021 - Paper 1

Question icon

Question 4

Gegee:-TR-=-5-:-1-V1-=-2-000-V-S-=-50-kVA-Puit-=-45-kW-Transformatorverliese-=-500-W--Bereken-die:--4.7.1-Sekondêre-fase-spanning--4.7.2-Rendement-van-die-transformator--4.7.3-Arbeidsfaktor-van-die-transformator--4.7.4-Stroom-deur-die-las-getrek-NSC Electrical Technology Power Systems-Question 4-2021-Paper 1.png

Gegee: TR = 5 : 1 V1 = 2 000 V S = 50 kVA Puit = 45 kW Transformatorverliese = 500 W Bereken die: 4.7.1 Sekondêre fase spanning 4.7.2 Rendement van die transforma... show full transcript

Worked Solution & Example Answer:Gegee: TR = 5 : 1 V1 = 2 000 V S = 50 kVA Puit = 45 kW Transformatorverliese = 500 W Bereken die: 4.7.1 Sekondêre fase spanning 4.7.2 Rendement van die transformator 4.7.3 Arbeidsfaktor van die transformator 4.7.4 Stroom deur die las getrek - NSC Electrical Technology Power Systems - Question 4 - 2021 - Paper 1

Step 1

Sekondêre fase spanning

96%

114 rated

Answer

To find the secondary phase voltage V2V_{2}, we use the transformer turns ratio:

V2=N2N1×V1V_{2} = \frac{N_{2}}{N_{1}} \times V_{1}

Given:

  • N1=5N_{1} = 5, N2=1N_{2} = 1, and V1=2000VV_{1} = 2000 V:
V2=15×2000=400VV_{2} = \frac{1}{5} \times 2000 = 400 V

Therefore, the secondary phase voltage is 400 V.

Step 2

Rendesment van die transformator

99%

104 rated

Answer

The efficiency η\, \eta of the transformer can be calculated using the formula:

η=PuitPuit+verlies×100\eta = \frac{P_{uit}}{P_{uit} + verlies} \times 100

Where:

  • Puit=45000WP_{uit} = 45000 W (45 kW) and verlies=500Wverlies = 500 W:
η=4500045000+500×100=98.9%\eta = \frac{45000}{45000 + 500} \times 100 = 98.9\%

Thus, the efficiency of the transformer is 98.9%.

Step 3

Arbeidsfaktor van die transformator

96%

101 rated

Answer

The power factor cosθ\cos \theta is determined using the following equation:

cosθ=PS\cos \theta = \frac{P}{S}

Where:

  • P=45000WP = 45000 \, W and S=50000VAS = 50000 \, VA (50 kVA):
cosθ=4500050000=0.9\cos \theta = \frac{45000}{50000} = 0.9

So, the power factor is 0.9.

Step 4

Stroom deur die las getrek

98%

120 rated

Answer

To find the current through the load I2I_{2}, we use the formula:

I2=S3×V2×cosθI_{2} = \frac{S}{\sqrt{3} \times V_{2} \times \cos \theta}

Substituting the values:

  • S=50000VAS = 50000 \, VA and V2=400VV_{2} = 400 \, V accordingly:
I2=500003×400×0.9=72.17AI_{2} = \frac{50000}{\sqrt{3} \times 400 \times 0.9} = 72.17 \, A

Thus, the current drawn by the load is approximately 72.17 A.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;