Photo AI

Gegee: VT = 300 V WS XC = 50 Ω R = 75 Ω IR = 4 A IL = 3 A 2.4.1 Bereken die waarde van die stroom deur die kapasitor - NSC Electrical Technology Power Systems - Question 2 - 2021 - Paper 1

Question icon

Question 2

Gegee:-VT-=-300-V-WS-XC-=-50-Ω-R-=-75-Ω-IR-=-4-A-IL-=-3-A--2.4.1-Bereken-die-waarde-van-die-stroom-deur-die-kapasitor-NSC Electrical Technology Power Systems-Question 2-2021-Paper 1.png

Gegee: VT = 300 V WS XC = 50 Ω R = 75 Ω IR = 4 A IL = 3 A 2.4.1 Bereken die waarde van die stroom deur die kapasitor. 2.4.2 Bereken die waarde van die induktiewe re... show full transcript

Worked Solution & Example Answer:Gegee: VT = 300 V WS XC = 50 Ω R = 75 Ω IR = 4 A IL = 3 A 2.4.1 Bereken die waarde van die stroom deur die kapasitor - NSC Electrical Technology Power Systems - Question 2 - 2021 - Paper 1

Step 1

Bereken die waarde van die stroom deur die kapasitor.

96%

114 rated

Answer

Die stroom deur die kapasitor (IC) kan bereken word met die formule:

IC=VTXCI_C = \frac{V_T}{X_C}

waar:

  • VT = Totale spanning = 300 V
  • XC = Kapasitiewe reaktansie = 50 Ω

Dus:

IC=300V50Ω=6AI_C = \frac{300 V}{50 \Omega} = 6 A

Step 2

Bereken die waarde van die induktiewe reaktansie.

99%

104 rated

Answer

Die induktiewe reaktansie (XL) kan bereken word met die formule:

XL=Rtan(θ)X_L = R \cdot \tan(\theta)

waar:

  • R = 75 Ω
  • theta = cos1(IRIT)=cos1(4A4A+6A)=36,87°\cos^{-1}(\frac{I_R}{I_T}) = \cos^{-1}(\frac{4 A}{4 A + 6 A}) = 36,87°

Eerste bereken die tan van die hoek:

XL=75tan(36,87°)=750,75=56,25ΩX_L = 75 \cdot \tan(36,87°) = 75 \cdot 0,75 = 56,25 Ω

Step 3

Bereken die waarde van die totale stroom.

96%

101 rated

Answer

Die totale stroom (IT) kan bereken word deur die Pythagorese stel te gebruik:

IT=IR2+IC2I_T = \sqrt{I_R^2 + I_C^2}

Hierder:

  • IR = 4 A
  • IC = 6 A

Dus:

IT=(4A)2+(6A)2=16+36=527,21AI_T = \sqrt{(4 A)^2 + (6 A)^2} = \sqrt{16 + 36} = \sqrt{52} ≈ 7,21 A

Step 4

Bereken die fasesak.

98%

120 rated

Answer

Die fasesak kan bereken word met die formule:

θ=cos1(IRIT)\theta = \cos^{-1}\left( \frac{I_R}{I_T} \right)

Hierder:

  • IR = 4 A
  • IT = 7,21 A

Dus:

θ=cos1(47,21)36,87°\theta = \cos^{-1}\left( \frac{4}{7,21} \right) ≈ 36,87°

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;