Photo AI

1.1 Los op vir x: 1.1.1 $x^2 + 2x - 15 = 0$ (3) 1.1.2 $5x^2 - x - 9 = 0$ (Los jou antwoord korrek tot TWEE desimale syfers.) (4) 1.1.3 $x^2 \\leq 3x$ (4) 1.2 Gegee: $\frac{a + 64}{a} = 16$ (3) 1.2.1 Los op vir a - NSC Mathematics - Question 1 - 2022 - Paper 1

Question icon

Question 1

1.1-Los-op-vir-x:--1.1.1-$x^2-+-2x---15-=-0$-(3)--1.1.2-$5x^2---x---9-=-0$-(Los-jou-antwoord-korrek-tot-TWEE-desimale-syfers.)-(4)--1.1.3-$x^2-\\leq-3x$-(4)--1.2-Gegee:-$\frac{a-+-64}{a}-=-16$-(3)--1.2.1-Los-op-vir-a-NSC Mathematics-Question 1-2022-Paper 1.png

1.1 Los op vir x: 1.1.1 $x^2 + 2x - 15 = 0$ (3) 1.1.2 $5x^2 - x - 9 = 0$ (Los jou antwoord korrek tot TWEE desimale syfers.) (4) 1.1.3 $x^2 \\leq 3x$ (4) 1.2 Geg... show full transcript

Worked Solution & Example Answer:1.1 Los op vir x: 1.1.1 $x^2 + 2x - 15 = 0$ (3) 1.1.2 $5x^2 - x - 9 = 0$ (Los jou antwoord korrek tot TWEE desimale syfers.) (4) 1.1.3 $x^2 \\leq 3x$ (4) 1.2 Gegee: $\frac{a + 64}{a} = 16$ (3) 1.2.1 Los op vir a - NSC Mathematics - Question 1 - 2022 - Paper 1

Step 1

1.1.1 Los op vir x:

96%

114 rated

Answer

To solve the equation x2+2x15=0x^2 + 2x - 15 = 0, we can factor it as follows:

(x+5)(x3)=0(x + 5)(x - 3) = 0

Setting each factor to zero gives:

  • x+5=0x=5x + 5 = 0 \Rightarrow x = -5
  • x3=0x=3x - 3 = 0 \Rightarrow x = 3

Thus, the solutions are x=5x = -5 or x=3x = 3.

Step 2

1.1.2 Los op vir x:

99%

104 rated

Answer

For the equation 5x2x9=05x^2 - x - 9 = 0, we apply the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

where a=5a = 5, b=1b = -1, and c=9c = -9. Let's calculate:

  1. Calculate the discriminant: b24ac=(1)24(5)(9)=1+180=181b^2 - 4ac = (-1)^2 - 4(5)(-9) = 1 + 180 = 181

  2. Plug the values back into the formula: x=(1)±1812(5)=1±18110x = \frac{-(-1) \pm \sqrt{181}}{2(5)} = \frac{1 \pm \sqrt{181}}{10}

Approximating the square root:

  • 18113.45\sqrt{181} \approx 13.45

Thus, the solutions are: x1+13.45101.45andx113.45101.25x \approx \frac{1 + 13.45}{10} \approx 1.45 \quad \text{and} \quad x \approx \frac{1 - 13.45}{10} \approx -1.25

Step 3

1.1.3 Los op vir x:

96%

101 rated

Answer

To solve x23xx^2 \leq 3x, we first rearrange it to standard form:

x23x0x^2 - 3x \leq 0

Factoring gives: (x)(x3)0(x)(x - 3) \leq 0

Next, we find the critical points, which are x=0x = 0 and x=3x = 3. Testing intervals:

  • For x<0x < 0, choose x=1x = -1: (1)(4)=4(-1)(-4) = 4 (not in solution)
  • For 0<x<30 < x < 3, choose x=1x = 1: (1)(2)=2(1)(-2) = -2 (in solution)
  • For x>3x > 3, choose x=4x = 4: (4)(1)=4(4)(1) = 4 (not in solution)

The solution is therefore: 0x30 \leq x \leq 3

Step 4

1.2.1 Los op vir a.

98%

120 rated

Answer

We start with the equation: a+64a=16\frac{a + 64}{a} = 16

Cross-multiplying yields: a+64=16aa + 64 = 16a

Rearranging to isolate aa: 64=15aa=64154.2764 = 15a \Rightarrow a = \frac{64}{15} \approx 4.27

Step 5

1.2.2 Ons vervolgens op vir x:

97%

117 rated

Answer

Starting with the equation: 2x+26+x=162^x + 2^{6+x} = 16

We can express 16 as 242^4, leading to: 2x+262x=242^x + 2^6 \cdot 2^x = 2^4

Factoring gives: 2x(1+64)=2465imes2x=242^x(1 + 64) = 2^4 \Rightarrow 65 imes 2^x = 2^4

Dividing by 65: 2x=24652^x = \frac{2^4}{65}

Taking log base 2: x=log2(1665)x = \log_2 \left( \frac{16}{65} \right)

Step 6

1.3 Sonder die gebruik van 'n sakrekenaar, bereken die waarde van $\sqrt{\frac{2^{1002} + 2^{1006}}{17(2)^{99}}}$

97%

121 rated

Answer

We can factor the expression inside the square root:

  1. Rewrite the numerator: 21002+21006=21002(1+24)=21002172^{1002} + 2^{1006} = 2^{1002}(1 + 2^4) = 2^{1002} \cdot 17

  2. The expression then simplifies: 210021717(2)99=21002(2)99=23=21.5=22\sqrt{\frac{2^{1002} \cdot 17}{17(2)^{99}}} = \sqrt{\frac{2^{1002}}{(2)^{99}}} = \sqrt{2^{3}} = 2^{1.5} = 2 \sqrt{2}

Step 7

1.4 Los gelijktig vir x en y op:

96%

114 rated

Answer

We have the system of equations:

  1. 2xy=22x - y = 2 (1)
  2. 1x3y=1\frac{1}{x} - 3y = 1 (2)

From (1), express yy: y=2x2y = 2x - 2

Substituting into (2): 1x3(2x2)=1\frac{1}{x} - 3(2x - 2) = 1 1x6x+6=1\frac{1}{x} - 6x + 6 = 1 1x=6x5\frac{1}{x} = 6x - 5 Multiplying through by xx gives: 1=6x25x1 = 6x^2 - 5x 6x25x1=06x^2 - 5x - 1 = 0 Using the quadratic formula: x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} Where a=6a = 6, b=5b = -5, and c=1c = -1. The roots can be calculated to find corresponding values of yy.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;