Photo AI

Los op vir $x$: 1.1.1 $x^2 - 6x = 0$ 1.1.2 $x^2 + 10x + 8 = 0$ (korrek tot TWEE desimale plekke) 1.1.3 $(1 - x)(x + 2) < 0$ 1.1.4 $ oot{18}{x} - x = 2$ 1.2 Los gelyktydig op vir $x$ en $y$: $x + y = 3$ en $2x^2 + 4xy - y = 15$ 1.3 Indien $n$ die grootste heelgetal is waarvoor $n^{200} < 350^3$, bepaal die waarde van $n$. - NSC Mathematics - Question 1 - 2020 - Paper 1

Question icon

Question 1

Los-op-vir-$x$:--1.1.1-$x^2---6x-=-0$--1.1.2-$x^2-+-10x-+-8-=-0$-(korrek-tot-TWEE-desimale-plekke)--1.1.3-$(1---x)(x-+-2)-<-0$--1.1.4-$-oot{18}{x}---x-=-2$--1.2-Los-gelyktydig-op-vir-$x$-en-$y$:--$x-+-y-=-3$---en--$2x^2-+-4xy---y-=-15$--1.3-Indien-$n$-die-grootste-heelgetal-is-waarvoor-$n^{200}-<-350^3$,-bepaal-die-waarde-van-$n$.-NSC Mathematics-Question 1-2020-Paper 1.png

Los op vir $x$: 1.1.1 $x^2 - 6x = 0$ 1.1.2 $x^2 + 10x + 8 = 0$ (korrek tot TWEE desimale plekke) 1.1.3 $(1 - x)(x + 2) < 0$ 1.1.4 $ oot{18}{x} - x = 2$ 1.2 Los ... show full transcript

Worked Solution & Example Answer:Los op vir $x$: 1.1.1 $x^2 - 6x = 0$ 1.1.2 $x^2 + 10x + 8 = 0$ (korrek tot TWEE desimale plekke) 1.1.3 $(1 - x)(x + 2) < 0$ 1.1.4 $ oot{18}{x} - x = 2$ 1.2 Los gelyktydig op vir $x$ en $y$: $x + y = 3$ en $2x^2 + 4xy - y = 15$ 1.3 Indien $n$ die grootste heelgetal is waarvoor $n^{200} < 350^3$, bepaal die waarde van $n$. - NSC Mathematics - Question 1 - 2020 - Paper 1

Step 1

1.1.1 $x^2 - 6x = 0$

96%

114 rated

Answer

To solve the equation, we factor it:

x(x6)=0x(x - 6) = 0

This gives us the solutions: x=0x = 0 or x=6x = 6.

Step 2

1.1.2 $x^2 + 10x + 8 = 0$ (korrek tot TWEE desimale plekke)

99%

104 rated

Answer

Using the quadratic formula, we have:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

where a=1a = 1, b=10b = 10, and c=8c = 8.

Calculating: x=10±10241821x = \frac{-10 \pm \sqrt{10^2 - 4 \cdot 1 \cdot 8}}{2 \cdot 1} x=10±100322x = \frac{-10 \pm \sqrt{100 - 32}}{2} x=10±682x = \frac{-10 \pm \sqrt{68}}{2} x=10±2172x = \frac{-10 \pm 2\sqrt{17}}{2} Thus, we get: x=5±17x = -5 \pm \sqrt{17}

Calculating this gives us two values approximately: x5+4.123=0.88x \approx -5 + 4.123 = -0.88 and x54.123=9.12x \approx -5 - 4.123 = -9.12.

Step 3

1.1.3 $(1 - x)(x + 2) < 0$

96%

101 rated

Answer

To find the critical points, we set each factor to zero:

1x=0x=11 - x = 0 \Rightarrow x = 1 x+2=0x=2x + 2 = 0 \Rightarrow x = -2

We can test intervals: (-∞, -2), (-2, 1), (1, ∞). The sign change will determine where the product is negative. Testing yields:

  1. For x<2x < -2, both factors are positive.
  2. For 2<x<1-2 < x < 1, (1x)(1 - x) is positive and (x+2)(x + 2) is positive.
  3. For x>1x > 1, both factors are negative.

Thus, the solution is: 2<x<1-2 < x < 1.

Step 4

1.1.4 $ oot{18}{x} - x = 2$

98%

120 rated

Answer

Isolate xx:

18x=x+2\sqrt{18}{x} = x + 2

Squaring both sides yields:

18x=(x+2)218x = (x + 2)^2

Expanding and rearranging gives:

0=x24x+40 = x^2 - 4x + 4

Factoring gives: 0=(x2)(x2)0 = (x - 2)(x - 2)

Thus, the solution is x=2x = 2.

Step 5

1.2 Los gelyktydig op vir $x$ en $y$:

97%

117 rated

Answer

Starting from the equations:

  1. x+y=3x + y = 3
  2. 2x2+4xyy=152x^2 + 4xy - y = 15

From the first equation, solve for yy:

y=3xy = 3 - x

Substituting into the second equation:

2x2+4x(3x)(3x)=152x^2 + 4x(3 - x) - (3 - x) = 15

This simplifies to:

2x2+12x4x23+x=152x^2 + 12x - 4x^2 - 3 + x = 15 2x2+13x18=0-2x^2 + 13x - 18 = 0

Factoring gives us: (x2)(x9)=0(x - 2)(x - 9) = 0

This leads to x=2x = 2 or x=9x = 9. Using x+y=3x + y = 3, we find corresponding yy values: if x=2x = 2, y=1y = 1, and if x=9x = 9, y=6y = -6.

Step 6

1.3 Indien $n$ die grootste heelgetal is waarvoor $n^{200} < 350^3$, bepaal die waarde van $n$.

97%

121 rated

Answer

To solve for nn, start by simplifying the inequality:

n200<3503n^{200} < 350^3

Taking the 200th root of both sides gives:

n<3503/200n < 350^{3/200}

Calculating: 3503/200=(750)3/200=n<11.18350^{3/200} = (7 \cdot 50)^{3/200} = n < 11.18

Since nn must be an integer, we conclude:

n11n \leq 11

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;