Los op vir x:
1.1.1 $x^{2}-x-20=0$
1.1.2 $3x^{2}-2x-6=0$ (korrek tot TWEWE desimale syfers)
1.1.3 $(x-1)^{2} > 9$
1.1.4 $2/ ext{sqrt}6 + 2 = x$
Los gelyktydig op vir x en y:
1.2 $4x+y=2$ en $4x+y^{2}=8$
Indien dit gegee word dat $2^{x} imes 3^{y} = 24$, bepaal die numeriese waarde van $x-y$. - NSC Mathematics - Question 1 - 2021 - Paper 1
Question 1
Los op vir x:
1.1.1 $x^{2}-x-20=0$
1.1.2 $3x^{2}-2x-6=0$ (korrek tot TWEWE desimale syfers)
1.1.3 $(x-1)^{2} > 9$
1.1.4 $2/ ext{sqrt}6 + 2 = x$
Los gelyktydig o... show full transcript
Worked Solution & Example Answer:Los op vir x:
1.1.1 $x^{2}-x-20=0$
1.1.2 $3x^{2}-2x-6=0$ (korrek tot TWEWE desimale syfers)
1.1.3 $(x-1)^{2} > 9$
1.1.4 $2/ ext{sqrt}6 + 2 = x$
Los gelyktydig op vir x en y:
1.2 $4x+y=2$ en $4x+y^{2}=8$
Indien dit gegee word dat $2^{x} imes 3^{y} = 24$, bepaal die numeriese waarde van $x-y$. - NSC Mathematics - Question 1 - 2021 - Paper 1
Step 1
1.1.1 $x^{2}-x-20=0$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve for x, we can factor the quadratic equation:
(x−5)(x+4)=0
Setting each factor equal to zero gives:
x−5=0 ⟹ x=5
x+4=0 ⟹ x=−4
Thus, the solutions are:
x=5,x=−4
Step 2
1.1.2 $3x^{2}-2x-6=0$ (korrek tot TWEWE desimale syfers)
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Using the quadratic formula:
x=2a−b±b2−4ac
where a=3, b=−2, and c=−6:
x=2⋅32±(−2)2−4⋅3⋅(−6)
Calculating the discriminant:
=4+72=76
So,
x=62±76=62±219=31±19
Approximating the values:
Approximate x=31+19≈1.12
Approximate x=31−19≈−1.79
Thus, we get:
x≈1.12,x≈−1.79
Step 3
1.1.3 $(x-1)^{2} > 9$
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve this inequality, we first consider where equality holds:
(x−1)2=9
Taking square roots yields:
x−1=3orx−1=−3
Thus, the critical points are:
x=4andx=−2
Now, we test intervals:
For x<−2, choose x=−3: (−3−1)2=16>9 (True)
For −2<x<4, choose x=0: (0−1)2=1<9 (False)
For x>4, choose x=5: (5−1)2=16>9 (True)
Thus, the solution set is:
x<−2orx>4
Step 4
1.1.4 $2/ ext{sqrt}6 + 2 = x$
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To isolate x:
x=2/6+2
Rationalizing the denominator gives:
x=62⋅66+2=626+2=36+2
Thus,
x=2+36
Step 5
1.2 $4x+y=2$ en $4x+y^{2}=8$
97%
117 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
First, solve 4x+y=2 for y:
y=2−4x
Substituting this into the second equation:
4x+(2−4x)2=8
Expanding this gives:
4x+(4x2−16x+4)=8
Rearranging gives:
4x2−12x−4=0
Dividing further simplifies to:
x2−3x−1=0
Using the quadratic formula:
x=23±9+4=23±13
Now substituting back to find y:
For x=23+13, y=2−4(23+13),
And for x=23−13, y=2−4(23−13).
Step 6
1.3 Indien dit gegee word dat $2^{x} imes 3^{y} = 24$, bepaal die numeriese waarde van $x-y$.
97%
121 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
We can express 24 as a product of its prime factors: