Photo AI

Los op vir x: 1.1.1 $x^{2}-x-20=0$ 1.1.2 $3x^{2}-2x-6=0$ (korrek tot TWEWE desimale syfers) 1.1.3 $(x-1)^{2} > 9$ 1.1.4 $2/ ext{sqrt}6 + 2 = x$ Los gelyktydig op vir x en y: 1.2 $4x+y=2$ en $4x+y^{2}=8$ Indien dit gegee word dat $2^{x} imes 3^{y} = 24$, bepaal die numeriese waarde van $x-y$. - NSC Mathematics - Question 1 - 2021 - Paper 1

Question icon

Question 1

Los-op-vir-x:--1.1.1-$x^{2}-x-20=0$--1.1.2-$3x^{2}-2x-6=0$-(korrek-tot-TWEWE-desimale-syfers)--1.1.3-$(x-1)^{2}->-9$--1.1.4-$2/-ext{sqrt}6-+-2-=-x$--Los-gelyktydig-op-vir-x-en-y:--1.2-$4x+y=2$-en-$4x+y^{2}=8$--Indien-dit-gegee-word-dat-$2^{x}--imes-3^{y}-=-24$,-bepaal-die-numeriese-waarde-van-$x-y$.-NSC Mathematics-Question 1-2021-Paper 1.png

Los op vir x: 1.1.1 $x^{2}-x-20=0$ 1.1.2 $3x^{2}-2x-6=0$ (korrek tot TWEWE desimale syfers) 1.1.3 $(x-1)^{2} > 9$ 1.1.4 $2/ ext{sqrt}6 + 2 = x$ Los gelyktydig o... show full transcript

Worked Solution & Example Answer:Los op vir x: 1.1.1 $x^{2}-x-20=0$ 1.1.2 $3x^{2}-2x-6=0$ (korrek tot TWEWE desimale syfers) 1.1.3 $(x-1)^{2} > 9$ 1.1.4 $2/ ext{sqrt}6 + 2 = x$ Los gelyktydig op vir x en y: 1.2 $4x+y=2$ en $4x+y^{2}=8$ Indien dit gegee word dat $2^{x} imes 3^{y} = 24$, bepaal die numeriese waarde van $x-y$. - NSC Mathematics - Question 1 - 2021 - Paper 1

Step 1

1.1.1 $x^{2}-x-20=0$

96%

114 rated

Answer

To solve for xx, we can factor the quadratic equation:

(x5)(x+4)=0(x-5)(x+4)=0

Setting each factor equal to zero gives:

  • x5=0x-5=0x=5x=5
  • x+4=0x+4=0x=4x=-4

Thus, the solutions are:

x=5,x=4x=5, \, x=-4

Step 2

1.1.2 $3x^{2}-2x-6=0$ (korrek tot TWEWE desimale syfers)

99%

104 rated

Answer

Using the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^{2}-4ac}}{2a}

where a=3a=3, b=2b=-2, and c=6c=-6:

x=2±(2)243(6)23x = \frac{2 \pm \sqrt{(-2)^{2}-4\cdot3\cdot(-6)}}{2\cdot3}

Calculating the discriminant:

=4+72=76= 4 + 72 = 76

So,

x=2±766=2±2196=1±193x = \frac{2 \pm \sqrt{76}}{6} = \frac{2 \pm 2\sqrt{19}}{6} = \frac{1 \pm \sqrt{19}}{3}

Approximating the values:

  • Approximate x=1+1931.12x = \frac{1 + \sqrt{19}}{3} \approx 1.12
  • Approximate x=11931.79x = \frac{1 - \sqrt{19}}{3} \approx -1.79

Thus, we get:

x1.12,  x1.79x \approx 1.12, \; x \approx -1.79

Step 3

1.1.3 $(x-1)^{2} > 9$

96%

101 rated

Answer

To solve this inequality, we first consider where equality holds:

(x1)2=9(x-1)^{2} = 9

Taking square roots yields:

x1=3orx1=3x-1 = 3 \quad \text{or} \quad x-1 = -3

Thus, the critical points are:

x=4andx=2x = 4 \quad \text{and} \quad x = -2

Now, we test intervals:

  • For x<2x < -2, choose x=3x = -3: (31)2=16>9(-3-1)^{2} = 16 > 9 (True)
  • For 2<x<4-2 < x < 4, choose x=0x = 0: (01)2=1<9(0-1)^{2} = 1 < 9 (False)
  • For x>4x > 4, choose x=5x = 5: (51)2=16>9(5-1)^{2} = 16 > 9 (True)

Thus, the solution set is:

x<2orx>4x < -2 \quad \text{or} \quad x > 4

Step 4

1.1.4 $2/ ext{sqrt}6 + 2 = x$

98%

120 rated

Answer

To isolate xx:

x=2/6+2x = 2/\sqrt{6} + 2

Rationalizing the denominator gives:

x=2666+2=266+2=63+2x = \frac{2}{\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}} + 2 = \frac{2\sqrt{6}}{6} + 2 = \frac{\sqrt{6}}{3} + 2

Thus,

x=2+63x = 2 + \frac{\sqrt{6}}{3}

Step 5

1.2 $4x+y=2$ en $4x+y^{2}=8$

97%

117 rated

Answer

First, solve 4x+y=24x+y=2 for yy:

y=24xy = 2 - 4x

Substituting this into the second equation:

4x+(24x)2=84x+(2-4x)^{2}=8

Expanding this gives:

4x+(4x216x+4)=84x+(4x^{2}-16x+4)=8

Rearranging gives:

4x212x4=04x^{2}-12x-4=0

Dividing further simplifies to:

x23x1=0x^{2}-3x-1=0

Using the quadratic formula:

x=3±9+42=3±132x = \frac{3 \pm \sqrt{9+4}}{2}=\frac{3 \pm \sqrt{13}}{2}

Now substituting back to find yy:

For x=3+132x = \frac{3 + \sqrt{13}}{2}, y=24(3+132)y = 2 - 4\left(\frac{3 + \sqrt{13}}{2}\right),

And for x=3132x = \frac{3 - \sqrt{13}}{2}, y=24(3132)y = 2 - 4\left(\frac{3 - \sqrt{13}}{2}\right).

Step 6

1.3 Indien dit gegee word dat $2^{x} imes 3^{y} = 24$, bepaal die numeriese waarde van $x-y$.

97%

121 rated

Answer

We can express 24 as a product of its prime factors:

24=23×3124 = 2^{3} \times 3^{1}

Setting up the equations:

x=3 and y=1x = 3\text{ and } y = 1

Calculating xyx - y gives:

xy=31=2x - y = 3 - 1 = 2

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;