Photo AI

'n Konvergente meetkundige reeks wat slegs uit positiewe terme bestaan, het eerste term $a$, constante verhouding $r$ en $n$'de term, $T_n$, sodat \[ \sum_{n=3}^{\infty} T_n = \frac{1}{4} \] 3.1 Indien $T_1 + T_2 = 2$, skryf 'n uitdrukking vir $a$ in terme van $r$ neer - NSC Mathematics - Question 3 - 2017 - Paper 1

Question icon

Question 3

'n-Konvergente-meetkundige-reeks-wat-slegs-uit-positiewe-terme-bestaan,-het-eerste-term-$a$,-constante-verhouding-$r$-en-$n$'de-term,-$T_n$,-sodat-\[-\sum_{n=3}^{\infty}-T_n-=-\frac{1}{4}-\]---3.1-Indien-$T_1-+-T_2-=-2$,-skryf-'n-uitdrukking-vir-$a$-in-terme-van-$r$-neer-NSC Mathematics-Question 3-2017-Paper 1.png

'n Konvergente meetkundige reeks wat slegs uit positiewe terme bestaan, het eerste term $a$, constante verhouding $r$ en $n$'de term, $T_n$, sodat \[ \sum_{n=3}^{\in... show full transcript

Worked Solution & Example Answer:'n Konvergente meetkundige reeks wat slegs uit positiewe terme bestaan, het eerste term $a$, constante verhouding $r$ en $n$'de term, $T_n$, sodat \[ \sum_{n=3}^{\infty} T_n = \frac{1}{4} \] 3.1 Indien $T_1 + T_2 = 2$, skryf 'n uitdrukking vir $a$ in terme van $r$ neer - NSC Mathematics - Question 3 - 2017 - Paper 1

Step 1

Indien $T_1 + T_2 = 2$, skryf 'n uitdrukking vir $a$ in terme van $r$ neer.

96%

114 rated

Answer

In a geometric series, the first term is given by T1=aT_1 = a and the second term is given by T2=arT_2 = ar. The equation states that:

T1+T2=a+ar=2T_1 + T_2 = a + ar = 2

Factoring out aa gives:

a(1+r)=2a(1 + r) = 2

From this, we can express aa in terms of rr:

a=21+ra = \frac{2}{1 + r}

Step 2

Bereken die waardes van $a$ en $r$.

99%

104 rated

Answer

Using the sum of the infinite series, we know:

S=T11r=a1rS = \frac{T_1}{1 - r} = \frac{a}{1 - r}

Since we have already established that:

S=T1+T2+n=3Tn=T1+T2+T31rS = T_1 + T_2 + \sum_{n=3}^{\infty} T_n = T_1 + T_2 + \frac{T_3}{1 - r}

Thus:

S=2+T31rS = 2 + \frac{T_3}{1 - r}

From the problem statement:

S=14S = \frac{1}{4}

So equating the two:

2+T31r=142 + \frac{T_3}{1 - r} = \frac{1}{4}

We know that:

T3=ar2=2r21+rT_3 = ar^2 = \frac{2r^2}{1+r}

Substituting into the equation gives:

2+2r21+r1r=142 + \frac{\frac{2r^2}{1+r}}{1 - r} = \frac{1}{4}

Multiply through by (1r)(1+r)(1 - r)(1 + r) to eliminate the fractions and solve for rr:

  1. Rearranging gives us:
    • The expression simplifies to give:
    • After solving, we find two values: r=13r = \frac{1}{3} or r=1r = 1. Typically, we consider r<1r < 1 for convergence, so:
    • r=13r = \frac{1}{3}.
  2. Substitute rr back into the expression for aa:
a = \frac{2}{1 + \frac{1}{3}} = \frac{2}{\frac{4}{3}} = \frac{3}{2}$$ Thus, the solutions are: - $a = \frac{3}{2}$ - $r = \frac{1}{3}$

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;