Photo AI

Los op vir $x$: 1.1.1 $(3x-6)(x+2)=0$ 1.1.2 $2x^2-6x+1=0$ (korrek tot TWEWE desimale plekke) 1.1.3 $x^2-90>x$ 1.1.4 $x- rac{7}{ oot{x}{2}}=-12$ Los gelijktydig vir $x$ en $y$ op: $2x-y=2$ $xy=4$ - NSC Mathematics - Question 1 - 2022 - Paper 1

Question icon

Question 1

Los-op-vir-$x$:--1.1.1-$(3x-6)(x+2)=0$--1.1.2-$2x^2-6x+1=0$-(korrek-tot-TWEWE-desimale-plekke)--1.1.3-$x^2-90>x$--1.1.4-$x--rac{7}{-oot{x}{2}}=-12$---Los-gelijktydig-vir-$x$-en-$y$-op:--$2x-y=2$--$xy=4$-NSC Mathematics-Question 1-2022-Paper 1.png

Los op vir $x$: 1.1.1 $(3x-6)(x+2)=0$ 1.1.2 $2x^2-6x+1=0$ (korrek tot TWEWE desimale plekke) 1.1.3 $x^2-90>x$ 1.1.4 $x- rac{7}{ oot{x}{2}}=-12$ Los gelijktydig... show full transcript

Worked Solution & Example Answer:Los op vir $x$: 1.1.1 $(3x-6)(x+2)=0$ 1.1.2 $2x^2-6x+1=0$ (korrek tot TWEWE desimale plekke) 1.1.3 $x^2-90>x$ 1.1.4 $x- rac{7}{ oot{x}{2}}=-12$ Los gelijktydig vir $x$ en $y$ op: $2x-y=2$ $xy=4$ - NSC Mathematics - Question 1 - 2022 - Paper 1

Step 1

1.1.1 $(3x-6)(x+2)=0$

96%

114 rated

Answer

To solve for xx, we set each factor to zero:

  1. 3x6=03x - 6 = 0 leads to: x=2x = 2

  2. x+2=0x + 2 = 0 leads to: x=2x = -2

Thus, the solutions are x=2x = 2 and x=2x = -2.

Step 2

1.1.2 $2x^2-6x+1=0$ (korrek tot TWEWE desimale plekke)

99%

104 rated

Answer

Using the quadratic formula, where a=2a = 2, b=6b = -6, and c=1c = 1:

oot{b^2 - 4ac}{2a}}$$ Calculating the discriminant: $$b^2 - 4ac = (-6)^2 - 4(2)(1) = 36 - 8 = 28$$ Now substituting into the quadratic formula: $$x = rac{6 ext{±} oot{28}{4}}{4} = rac{6 ext{±} 2 oot{7}}{4} = rac{3 ext{±} oot{7}}{2}$$ Calculating the two values: - $x eq 2,82$ - $x eq 0,18$

Step 3

1.1.3 $x^2-90>x$

96%

101 rated

Answer

Rearranging the inequality gives:

x2x90>0x^2 - x - 90 > 0

Factoring:

(x10)(x+9)>0(x - 10)(x + 9) > 0

The critical values are x=10x = 10 and x=9x = -9. The solution to the inequality is:

x<9extorx>10x < -9 ext{ or } x > 10

Step 4

1.1.4 $x- rac{7}{ oot{x}{2}}=-12$

98%

120 rated

Answer

First, isolate ootx2 oot{x}{2}:

oot{x}{2}}$$ Squaring both sides results in: $$x^2 + 24x + 144 = 49$$ So we have: $$x^2 + 24x + 95 = 0$$ Using the quadratic formula: $$x = rac{-24 ext{±} oot{24^2 - 4 imes 1 imes 95}{2 imes 1}}$$ Calculating yields: - $x = 9 ext{ or } x = -16$

Step 5

1.2 Los gelijktydig vir $x$ en $y$ op:

97%

117 rated

Answer

We start with the equations:

  1. 2xy=22x - y = 2 (Eq 1)
  2. xy=4xy = 4 (Eq 2)

From Eq 1, express yy:

y=2x2y = 2x - 2

Substituting into Eq 2:

x(2x2)=4x(2x - 2) = 4

This simplifies to:

2x22x4=02x^2 - 2x - 4 = 0

Dividing through by 2 gives:

x2x2=0x^2 - x - 2 = 0

Factoring:

(x2)(x+1)=0(x - 2)(x + 1) = 0

So x=2extorx=1x = 2 ext{ or } x = -1.

Substituting back:

  • For x=2x = 2, y=2(2)2=2y = 2(2) - 2 = 2
  • For x=1x = -1, y=2(1)2=4y = 2(-1) - 2 = -4

Thus, the pairs are (2,2)(2, 2) and (1,4)(-1, -4).

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;