Photo AI

Solve for x: 1.1.1 $x^{2}-x-12=0$ 1.1.2 $x(x+3)-1=0$ (Leave your answer in simplest surd form.) 1.1.3 $x(4-x)<0$ 1.1.4 $x= \frac{a^{2}+a-2}{a-1}$ if $a=888888888$ - NSC Mathematics - Question 1 - 2016 - Paper 1

Question icon

Question 1

Solve-for-x:--1.1.1--$x^{2}-x-12=0$--1.1.2--$x(x+3)-1=0$-(Leave-your-answer-in-simplest-surd-form.)--1.1.3--$x(4-x)<0$--1.1.4--$x=-\frac{a^{2}+a-2}{a-1}$-if-$a=888888888$-NSC Mathematics-Question 1-2016-Paper 1.png

Solve for x: 1.1.1 $x^{2}-x-12=0$ 1.1.2 $x(x+3)-1=0$ (Leave your answer in simplest surd form.) 1.1.3 $x(4-x)<0$ 1.1.4 $x= \frac{a^{2}+a-2}{a-1}$ if $a=88888... show full transcript

Worked Solution & Example Answer:Solve for x: 1.1.1 $x^{2}-x-12=0$ 1.1.2 $x(x+3)-1=0$ (Leave your answer in simplest surd form.) 1.1.3 $x(4-x)<0$ 1.1.4 $x= \frac{a^{2}+a-2}{a-1}$ if $a=888888888$ - NSC Mathematics - Question 1 - 2016 - Paper 1

Step 1

1.1.1 Solve $x^{2}-x-12=0$

96%

114 rated

Answer

To solve the quadratic equation x2x12=0x^{2}-x-12=0, we can factor it:

(x4)(x+3)=0(x-4)(x+3)=0

Setting each factor to zero gives:

x4=0x=4x-4=0 \Rightarrow x=4 x+3=0x=3x+3=0 \Rightarrow x=-3

Thus, the solutions are x=4x=4 and x=3x=-3.

Step 2

1.1.2 Solve $x(x+3)-1=0$

99%

104 rated

Answer

To solve the equation, we first rearrange it:

x(x+3)=1x(x+3)=1

Next, expand and rearrange:

x2+3x1=0x^{2}+3x-1=0

Using the quadratic formula where: a=1,b=3,c=1a=1, b=3, c=-1

We have:

x=b±b24ac2a=3±324(1)(1)2(1)=3±9+42=3±132x = \frac{-b\pm\sqrt{b^{2}-4ac}}{2a} = \frac{-3\pm\sqrt{3^{2}-4(1)(-1)}}{2(1)} = \frac{-3\pm\sqrt{9+4}}{2} = \frac{-3\pm\sqrt{13}}{2}

Thus the solutions in simplest surd form are: x=3+132andx=3132x = \frac{-3+\sqrt{13}}{2} \quad \text{and} \quad x = \frac{-3-\sqrt{13}}{2}

Step 3

1.1.3 Solve $x(4-x)<0$

96%

101 rated

Answer

To solve the inequality, we first identify the critical points by setting:

x(4x)=0x(4-x)=0

This gives: x=0 or x=4x=0 \text{ or } x=4

Next, we'll determine the intervals to test:

  • Interval 1: (,0)(-\infty, 0)
  • Interval 2: (0,4)(0, 4)
  • Interval 3: (4,)(4, \infty)

Testing these intervals, we find:

  • For Interval 1, choose x=1x=-1: (1)(4(1))=5>0(-1)(4-(-1))=5>0
  • For Interval 2, choose x=2x=2: (2)(42)=4<0(2)(4-2)=4<0
  • For Interval 3, choose x=5x=5: (5)(45)=5<0(5)(4-5)=-5<0

Thus, the solution to the inequality is: x(0,4)x \in (0, 4).

Step 4

1.1.4 Solve $x= \frac{a^{2}+a-2}{a-1}$ if $a=888888888$

98%

120 rated

Answer

Substitute a=888888888a=888888888 into the equation:

x=(888888888)2+88888888828888888881x= \frac{(888888888)^{2}+888888888-2}{888888888-1}

Calculating this expression yields:

x=888888888x=888888888.

Step 5

1.2 Solve simultaneously $y+7=2x$ and $x^{2}-xy+3y^{2}=15$

97%

117 rated

Answer

From the first equation, we can express yy in terms of xx:

y=2x7y=2x-7

Substituting this into the second equation:

x2(2x7)x+3(2x7)2=15x^{2}-(2x-7)x+3(2x-7)^{2}=15

Expanding and simplifying gives:

x22x2+7x+3(4x228x+49)=15x^{2}-2x^{2}+7x+3(4x^{2}-28x+49)=15

Combine like terms:

11x219x60=011x^{2}-19x-60=0

Now, we can solve this quadratic equation using the quadratic formula. Solving for xx gives:

x=3 or x=1x = 3 \text{ or } x= -1

Now substituting these values back into y=2x7y=2x-7 to find corresponding yy:

For x=3x=3: y=2(3)7=1y=2(3)-7= -1

For x=1x=-1: y=2(1)7=9y=2(-1)-7= -9

Thus, the solutions are (x,y)=(3,1)(x, y) = (3, -1) and (1,9)(-1, -9).

Step 6

1.3 Determine the range of the function $y=x+x^{\frac{1}{x}}$, $x\neq0$, $x$ is real.

97%

121 rated

Answer

To analyze the range of the function, we can first find its derivative:

y=1+1xx2y^{'}=1+\frac{1-x}{x^{2}}

Setting the derivative to zero to find critical points:

1+1xx2=0x2=1+xx2x+1=01+\frac{1-x}{x^{2}}=0 \Rightarrow x^{2}=-1+x \Rightarrow x^{2}-x+1=0

This has no real solutions showing that the function is always increasing for x>0x>0 and x<0x<0. Now as x0+x \to 0^{+}, we find yy \to \infty and as xx \to \infty, yy \to \infty. Hence the minimum point can be found by testing values around x=1x=1:

Evaluating at x=1x=1 gives:

y=1+1=2y=1+1=2

Thus, the range of the function is: y2y \geq 2, hence the range of the function is [2,)[2, \infty).

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;