Photo AI

1.1 Solve for x: 1.1.1 $x^2 - x - 20 = 0$ 1.1.2 $3x^2 - 2x - 6 = 0$ (correct to TWO decimal places) 1.1.3 $(x - 1)^2 > 9$ 1.1.4 $2\\sqrt{x + 6} + 2 = x$ 1.2 Solve simultaneously for x and y: $4x + y = 2$ and $4x + y^2 = 8$ 1.3 If it is given that $2^{x} * 3^{y} = 24^{x}$, determine the numerical value of $x - y$. - NSC Mathematics - Question 1 - 2021 - Paper 1

Question icon

Question 1

1.1-Solve-for-x:--1.1.1-$x^2---x---20-=-0$--1.1.2-$3x^2---2x---6-=-0$-(correct-to-TWO-decimal-places)--1.1.3-$(x---1)^2->-9$--1.1.4-$2\\sqrt{x-+-6}-+-2-=-x$--1.2-Solve-simultaneously-for-x-and-y:--$4x-+-y-=-2$-and-$4x-+-y^2-=-8$--1.3-If-it-is-given-that-$2^{x}-*-3^{y}-=-24^{x}$,-determine-the-numerical-value-of-$x---y$.-NSC Mathematics-Question 1-2021-Paper 1.png

1.1 Solve for x: 1.1.1 $x^2 - x - 20 = 0$ 1.1.2 $3x^2 - 2x - 6 = 0$ (correct to TWO decimal places) 1.1.3 $(x - 1)^2 > 9$ 1.1.4 $2\\sqrt{x + 6} + 2 = x$ 1.2 Sol... show full transcript

Worked Solution & Example Answer:1.1 Solve for x: 1.1.1 $x^2 - x - 20 = 0$ 1.1.2 $3x^2 - 2x - 6 = 0$ (correct to TWO decimal places) 1.1.3 $(x - 1)^2 > 9$ 1.1.4 $2\\sqrt{x + 6} + 2 = x$ 1.2 Solve simultaneously for x and y: $4x + y = 2$ and $4x + y^2 = 8$ 1.3 If it is given that $2^{x} * 3^{y} = 24^{x}$, determine the numerical value of $x - y$. - NSC Mathematics - Question 1 - 2021 - Paper 1

Step 1

1.1.1 $x^2 - x - 20 = 0$

96%

114 rated

Answer

To solve the quadratic equation, we can factor it:

(x5)(x+4)=0(x - 5)(x + 4) = 0

So, setting each factor to zero gives us:

x5=0x=5x - 5 = 0 \Rightarrow x = 5 x+4=0x=4x + 4 = 0 \Rightarrow x = -4

Thus, the solutions are x=5x = 5 or x=4x = -4.

Step 2

1.1.2 $3x^2 - 2x - 6 = 0$ (correct to TWO decimal places)

99%

104 rated

Answer

Using the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Here, a=3a = 3, b=2b = -2, and c=6c = -6:

x=(2)±(2)24(3)(6)2(3)x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(3)(-6)}}{2(3)} x=2±4+726x = \frac{2 \pm \sqrt{4 + 72}}{6} x=2±766x = \frac{2 \pm \sqrt{76}}{6} x=2±2196x = \frac{2 \pm 2\sqrt{19}}{6} x=1±1933x = \frac{1 \pm \frac{\sqrt{19}}{3}}{3}

Calculating the two decimal places yields: x1.12,1.79x \approx 1.12, \: -1.79

Step 3

1.1.3 $(x - 1)^2 > 9$

96%

101 rated

Answer

First, take the square root of both sides:

x1>3|x - 1| > 3

This leads to two cases:

  1. x1>3x - 1 > 3 \Rightarrow x>4x > 4
  2. x1<3x - 1 < -3 \Rightarrow x<2x < -2

Thus, the solution sets combine to: x<2 or x>4x < -2 \text{ or } x > 4

Step 4

1.1.4 $2\sqrt{x + 6} + 2 = x$

98%

120 rated

Answer

First, isolate the surd:

2x+6=x22\sqrt{x + 6} = x - 2

Next, square both sides: 4(x+6)=(x2)24(x + 6) = (x - 2)^2

Expanding both sides gives: 4x+24=x24x+44x + 24 = x^2 - 4x + 4

Rearranging leads to: x28x20=0x^2 - 8x - 20 = 0

Factoring or using the quadratic formula, we find: x=10 or x=2x = 10 \text{ or } x = -2

Step 5

1.2 $4x + y = 2$ and $4x + y^2 = 8$

97%

117 rated

Answer

From the first equation, rearranging gives: y=24xy = 2 - 4x

Substituting this into the second equation results in: 4x+(24x)2=84x + (2 - 4x)^2 = 8

Thus, expanding gives: 4x+416x+16x2=84x + 4 - 16x + 16x^2 = 8 16x212x4=016x^2 - 12x - 4 = 0

Using the quadratic formula: x=(12)±(12)24(16)(4)2(16)x = \frac{-(-12) \pm \sqrt{(-12)^2 - 4(16)(-4)}}{2(16)} Calculating yields: x=1 or x=14x = 1 \text{ or } x = -\frac{1}{4}

Then substituting back gives the corresponding y-values: For x=1x = 1, y=2y = -2 and for x=14x = -\frac{1}{4}, y=3y = 3.

Step 6

1.3 If it is given that $2^{x} * 3^{y} = 24^{x}$

97%

121 rated

Answer

Rewriting 24x24^{x} gives: 24=233124x=23x3x24 = 2^3 * 3^1 \Rightarrow 24^x = 2^{3x} * 3^{x}

Thus, we have: 2x3y=23x3x2^x * 3^y = 2^{3x} * 3^{x}

Setting the bases equal gives:

  1. x=3xx=0x = 3x \Rightarrow x = 0
  2. y=xy=0y = x \Rightarrow y = 0

Therefore, xy=00=0x - y = 0 - 0 = 0.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;