Photo AI

1.1 Solve for x: 1.1.1 3x² + 5x = 0 1.1.2 4x² + 3x - 5 = 0 (answers correct to TWO decimal places) 1.1.3 (x - 1)² - 9 ≥ 0 1.1.4 5x² - 5 = 0 1.1.5 \( \frac{x}{\sqrt{20 - x}} = 1 \) 1.2 Solve for x and y simultaneously: x + y = 9 and 2x² - y² = 7 1.3 Given: \( P = (1 - a)(1 + a)(1 + a²)(1 + a^{12}) \) Determine the value of \( P \times T \) in terms of a. - NSC Mathematics - Question 1 - 2024 - Paper 1

Question icon

Question 1

1.1-Solve-for-x:--1.1.1-3x²-+-5x-=-0--1.1.2-4x²-+-3x---5-=-0-(answers-correct-to-TWO-decimal-places)--1.1.3-(x---1)²---9-≥-0--1.1.4-5x²---5-=-0--1.1.5-\(-\frac{x}{\sqrt{20---x}}-=-1-\)--1.2-Solve-for-x-and-y-simultaneously:--x-+-y-=-9-and-2x²---y²-=-7--1.3-Given:-\(-P-=-(1---a)(1-+-a)(1-+-a²)(1-+-a^{12})-\)--Determine-the-value-of-\(-P-\times-T-\)-in-terms-of-a.-NSC Mathematics-Question 1-2024-Paper 1.png

1.1 Solve for x: 1.1.1 3x² + 5x = 0 1.1.2 4x² + 3x - 5 = 0 (answers correct to TWO decimal places) 1.1.3 (x - 1)² - 9 ≥ 0 1.1.4 5x² - 5 = 0 1.1.5 \( \frac{x}{\s... show full transcript

Worked Solution & Example Answer:1.1 Solve for x: 1.1.1 3x² + 5x = 0 1.1.2 4x² + 3x - 5 = 0 (answers correct to TWO decimal places) 1.1.3 (x - 1)² - 9 ≥ 0 1.1.4 5x² - 5 = 0 1.1.5 \( \frac{x}{\sqrt{20 - x}} = 1 \) 1.2 Solve for x and y simultaneously: x + y = 9 and 2x² - y² = 7 1.3 Given: \( P = (1 - a)(1 + a)(1 + a²)(1 + a^{12}) \) Determine the value of \( P \times T \) in terms of a. - NSC Mathematics - Question 1 - 2024 - Paper 1

Step 1

1.1.1 3x² + 5x = 0

96%

114 rated

Answer

To solve the equation, we can factor it:

3x2+5x=03x^2 + 5x = 0

Factoring gives us:

x(3x+5)=0x(3x + 5) = 0

Setting each factor to zero:

  1. x=0x = 0
  2. 3x+5=0x=533x + 5 = 0 \Rightarrow x = -\frac{5}{3}

Thus, the solutions for x are x=0x = 0 and x=53x = -\frac{5}{3}.

Step 2

1.1.2 4x² + 3x - 5 = 0 (answers correct to TWO decimal places)

99%

104 rated

Answer

We apply the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Here, a = 4, b = 3, c = -5.

Calculating the discriminant:

b24ac=3244(5)=9+80=89b^2 - 4ac = 3^2 - 4 \cdot 4 \cdot (-5) = 9 + 80 = 89

Now substituting into the formula:

x=3±898x = \frac{-3 \pm \sqrt{89}}{8}

Calculating:

  1. x1=3+8980.80x_1 = \frac{-3 + \sqrt{89}}{8} \approx 0.80
  2. x2=38981.55x_2 = \frac{-3 - \sqrt{89}}{8} \approx -1.55.

Step 3

1.1.3 (x - 1)² - 9 ≥ 0

96%

101 rated

Answer

To solve this inequality, we start by rewriting it:

(x1)29(x - 1)² ≥ 9

Taking the square root of both sides gives:

x13|x - 1| ≥ 3

This results in two cases:

  1. x13x4x - 1 ≥ 3 \Rightarrow x ≥ 4
  2. x13x2x - 1 ≤ -3 \Rightarrow x ≤ -2

Thus, the solution is: x2 or x4x ≤ -2 \text{ or } x ≥ 4.

Step 4

1.1.4 5x² - 5 = 0

98%

120 rated

Answer

Factoring the left side results in:

5(x21)=05(x² - 1) = 0

This simplifies to:

5(x1)(x+1)=05(x - 1)(x + 1) = 0

Thus, the solutions are:

  1. x1=0x=1x - 1 = 0 \Rightarrow x = 1
  2. x+1=0x=1x + 1 = 0 \Rightarrow x = -1.

Step 5

1.1.5 \( \frac{x}{\sqrt{20 - x}} = 1 \)

97%

117 rated

Answer

We start by isolating the surd:

x=20xx = \sqrt{20 - x}

Squaring both sides leads to:

x2=20xx^2 = 20 - x

Rearranging yields:

x2+x20=0x^2 + x - 20 = 0

Factoring gives:

(x+5)(x4)=0(x + 5)(x - 4) = 0

Thus, the solutions are:

  1. x+5=0x=5x + 5 = 0 \Rightarrow x = -5
  2. x4=0x=4x - 4 = 0 \Rightarrow x = 4.

Step 6

1.2 Solve for x and y simultaneously: x + y = 9 and 2x² - y² = 7

97%

121 rated

Answer

From the first equation, we express y in terms of x:

y=9xy = 9 - x

Substituting into the second equation:

2x2(9x)2=72x² - (9 - x)² = 7

Expanding the equation:

2x2(8118x+x2)=72x² - (81 - 18x + x²) = 7

Simplifying leads to:

x2+18x88=0x² + 18x - 88 = 0

Using the quadratic formula gives:

x=22 or x=4x = 22 \text{ or } x = -4

Substituting back to find y:

  1. If x=22:y=13x = 22: y = -13
  2. If x=4:y=13x = -4: y = 13.

Step 7

1.3 Given: \( P = (1 - a)(1 + a)(1 + a²)(1 + a^{12}) \) Determine the value of \( P \times T \) in terms of a.

96%

114 rated

Answer

To find ( P \times T ), we first assume ( T = (1 + a)(1 + a²)(1 + a^{12}) ).

Thus, ( P \times T = [(1 - a)(1 + a)(1 + a²)(1 + a^{12})] \times [(1 + a)(1 + a²)(1 + a^{12})] )

This expands to:

( P \times T = (1 - a)(1 + a)^2(1 + a²)²(1 + a^{12})² ).

Hence, the expression for ( P \times T ) in terms of a is: ( P \times T = (1 - a)(1 + a)^2(1 + a²)²(1 + a^{12})² ).

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;