Photo AI

1.1 Los op vir $x$: 1.1.1 $x^2 + 5x - 6 = 0$ 1.1.2 $4x^2 + 3x - 5 = 0$ (korrek tot TWEE desimale plekke) 1.1.3 $4x^2 - 1 < 0$ 1.1.4 $\left( \sqrt{32} + x \right) \left( \sqrt{32} - x \right) = x$ 1.2 Los gelijktidig op vir $x$ en $y$: $y + x = 12$ en $xy = 14 - 3x$ - NSC Mathematics - Question 1 - 2019 - Paper 1

Question icon

Question 1

1.1-Los-op-vir-$x$:--1.1.1-$x^2-+-5x---6-=-0$----1.1.2-$4x^2-+-3x---5-=-0$-(korrek-tot-TWEE-desimale-plekke)----1.1.3-$4x^2---1-<-0$----1.1.4-$\left(-\sqrt{32}-+-x-\right)-\left(-\sqrt{32}---x-\right)-=-x$----1.2-Los-gelijktidig-op-vir-$x$-en-$y$:-$y-+-x-=-12$---en--$xy-=-14---3x$-NSC Mathematics-Question 1-2019-Paper 1.png

1.1 Los op vir $x$: 1.1.1 $x^2 + 5x - 6 = 0$ 1.1.2 $4x^2 + 3x - 5 = 0$ (korrek tot TWEE desimale plekke) 1.1.3 $4x^2 - 1 < 0$ 1.1.4 $\left( \sqrt{32} + x \... show full transcript

Worked Solution & Example Answer:1.1 Los op vir $x$: 1.1.1 $x^2 + 5x - 6 = 0$ 1.1.2 $4x^2 + 3x - 5 = 0$ (korrek tot TWEE desimale plekke) 1.1.3 $4x^2 - 1 < 0$ 1.1.4 $\left( \sqrt{32} + x \right) \left( \sqrt{32} - x \right) = x$ 1.2 Los gelijktidig op vir $x$ en $y$: $y + x = 12$ en $xy = 14 - 3x$ - NSC Mathematics - Question 1 - 2019 - Paper 1

Step 1

1.1.1 $x^2 + 5x - 6 = 0$

96%

114 rated

Answer

To solve the quadratic equation, we can factor it as follows:

(x+6)(x1)=0(x + 6)(x - 1) = 0 Thus, the solutions are:

x=6orx=1x = -6 \quad \text{or} \quad x = 1

Step 2

1.1.2 $4x^2 + 3x - 5 = 0$ (korrek tot TWEE desimale plekke)

99%

104 rated

Answer

We can apply the quadratic formula:

x=b±b24ac2a,x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=4a = 4, b=3b = 3, and c=5c = -5. Substituting these values, we have:

x=3±3244(5)24=3±9+808=3±898x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 4 \cdot (-5)}}{2 \cdot 4} = \frac{-3 \pm \sqrt{9 + 80}}{8} = \frac{-3 \pm \sqrt{89}}{8} Calculating the two roots yields:

x10.55andx20.8x_1 \approx -0.55 \quad \text{and} \quad x_2 \approx 0.8

Step 3

1.1.3 $4x^2 - 1 < 0$

96%

101 rated

Answer

To solve this inequality, we first factor the left-hand side:

4x21<0    (2x1)(2x+1)<04x^2 - 1 < 0 \implies (2x - 1)(2x + 1) < 0 Next, we find the critical points:

2x1=0    x=0.5and2x+1=0    x=0.52x - 1 = 0 \implies x = 0.5 \quad \text{and} \quad 2x + 1 = 0 \implies x = -0.5 We check intervals around the critical points:

  • For x<0.5x < -0.5, the product is positive.
  • For 0.5<x<0.5-0.5 < x < 0.5, the product is negative.
  • For x>0.5x > 0.5, the product is positive. Thus, the solution is:

0.5<x<0.5-0.5 < x < 0.5

Step 4

1.1.4 $\left( \sqrt{32} + x \right) \left( \sqrt{32} - x \right) = x$

98%

120 rated

Answer

To solve this equation, we can first expand the left-hand side:

322x2=x    32x2=x\sqrt{32}^2 - x^2 = x \implies 32 - x^2 = x Rearranging gives:

x2+x32=0x^2 + x - 32 = 0 Now we can factor or apply the quadratic formula: Using the quadratic formula:

x=1±1241(32)21=1±1+1282=1±1292x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-32)}}{2 \cdot 1} = \frac{-1 \pm \sqrt{1 + 128}}{2} = \frac{-1 \pm \sqrt{129}}{2} Thus, we find:

x=4(selecting the positive root)x = 4 \quad \text{(selecting the positive root)}

Step 5

1.2 Los gelijktidig op vir $x$ en $y$: $y + x = 12$ $xy = 14 - 3x$

97%

117 rated

Answer

Starting with the first equation, express yy:

y=12xy = 12 - x Substituting into the second equation:

(12x)x=143x(12 - x)x = 14 - 3x Expanding gives:

12xx2=143x    x215x+14=012x - x^2 = 14 - 3x \implies x^2 - 15x + 14 = 0 Factoring, we have:

(x14)(x1)=0(x - 14)(x - 1) = 0 Thus, x=14x = 14 or x=1x = 1. Then, substituting back to find yy:

For x=14x = 14: y=2y = -2 (not valid) For x=1x = 1: y=11y = 11. Hence, valid values are x=1,y=11x = 1, y = 11.

Step 6

1.3 Beskryf die produk $1 \times 2 \times 3 \times 4 \times 30$. Bepaal die grootste waarde van $k$ sodat $3^k$ 'n faktor van die produk is.

97%

121 rated

Answer

Calculating the product gives:

1×2×3×4×30=2401 \times 2 \times 3 \times 4 \times 30 = 240 To find the highest power of 33 that divides 240240, we determine its prime factorization:

240=24×31×51240 = 2^4 \times 3^1 \times 5^1 Thus, the greatest value of kk such that 3k3^k is a factor is:

k=1k = 1

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;