Photo AI

Solve for x: 1.1.1 $x^2 + 9x + 14 = 0$ 1.1.2 $4x^2 + 9x - 3 = 0$ (correct to TWO decimal places) 1.1.3 $\sqrt{x^2 - 5} = 2\sqrt{x}$ 1.2 Solve for x and y if: $3x - y = 4$ and $x^2 + 2xy - y^2 = -2$ 1.3 Given: $f(x) = x^2 + 8x + 16$ 1.3.1 Solve for x if $f(x) > 0$ - NSC Mathematics - Question 1 - 2017 - Paper 1

Question icon

Question 1

Solve-for-x:--1.1.1-$x^2-+-9x-+-14-=-0$----1.1.2---$4x^2-+-9x---3-=-0$-(correct-to-TWO-decimal-places)--1.1.3---$\sqrt{x^2---5}-=-2\sqrt{x}$--1.2---Solve-for-x-and-y-if:-$3x---y-=-4$---and---$x^2-+-2xy---y^2-=--2$--1.3---Given:---$f(x)-=-x^2-+-8x-+-16$--1.3.1---Solve-for-x-if-$f(x)->-0$-NSC Mathematics-Question 1-2017-Paper 1.png

Solve for x: 1.1.1 $x^2 + 9x + 14 = 0$ 1.1.2 $4x^2 + 9x - 3 = 0$ (correct to TWO decimal places) 1.1.3 $\sqrt{x^2 - 5} = 2\sqrt{x}$ 1.2 Solve for x and y... show full transcript

Worked Solution & Example Answer:Solve for x: 1.1.1 $x^2 + 9x + 14 = 0$ 1.1.2 $4x^2 + 9x - 3 = 0$ (correct to TWO decimal places) 1.1.3 $\sqrt{x^2 - 5} = 2\sqrt{x}$ 1.2 Solve for x and y if: $3x - y = 4$ and $x^2 + 2xy - y^2 = -2$ 1.3 Given: $f(x) = x^2 + 8x + 16$ 1.3.1 Solve for x if $f(x) > 0$ - NSC Mathematics - Question 1 - 2017 - Paper 1

Step 1

1.1.1 $x^2 + 9x + 14 = 0$

96%

114 rated

Answer

To solve the equation x2+9x+14=0x^2 + 9x + 14 = 0, we can factor it:

(x+7)(x+2)=0(x + 7)(x + 2) = 0

Thus, we set each factor equal to zero:

  1. x+7=0x=7x + 7 = 0 \Rightarrow x = -7
  2. x+2=0x=2x + 2 = 0 \Rightarrow x = -2

The solutions are x=7x = -7 or x=2x = -2.

Step 2

1.1.2 $4x^2 + 9x - 3 = 0$

99%

104 rated

Answer

To find the roots of the equation, we use the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
Where a=4a = 4, b=9b = 9, and c=3c = -3.

Substituting these values into the formula gives:

x=9±9244(3)24x = \frac{-9 \pm \sqrt{9^2 - 4 \cdot 4 \cdot (-3)}}{2 \cdot 4}
=9±81+488= \frac{-9 \pm \sqrt{81 + 48}}{8}
=9±1298= \frac{-9 \pm \sqrt{129}}{8}

Calculating the approximations: 12911.36\sqrt{129} \approx 11.36
Thus, x=9+11.3680.295x = \frac{-9 + 11.36}{8} \approx 0.295
oror
x=911.3682.545x = \frac{-9 - 11.36}{8} \approx -2.545

The solutions are x0.30x \approx 0.30 and x2.54x \approx -2.54.

Step 3

1.1.3 $\sqrt{x^2 - 5} = 2\sqrt{x}$

96%

101 rated

Answer

To solve for xx, first square both sides:

(x25)2=(2x)2(\sqrt{x^2 - 5})^2 = (2\sqrt{x})^2 x25=4xx^2 - 5 = 4x

Rearranging the equation gives:

x24x5=0x^2 - 4x - 5 = 0

Factoring: (x5)(x+1)=0(x - 5)(x + 1) = 0

Setting each factor to zero:

  1. x5=0x=5x - 5 = 0 \Rightarrow x = 5
  2. x+1=0x=1x + 1 = 0 \Rightarrow x = -1

Thus, the solutions are x=5x = 5 or x=1x = -1.

Step 4

1.2 Solve for x and y if: $3x - y = 4$ and $x^2 + 2xy - y^2 = -2$

98%

120 rated

Answer

From the first equation 3xy=43x - y = 4, we can express yy in terms of xx:

y=3x4y = 3x - 4

Substituting this into the second equation:

x2+2x(3x4)(3x4)2=2x^2 + 2x(3x - 4) - (3x - 4)^2 = -2

Expanding gives: x2+6x28x(9x224x+16)=2x^2 + 6x^2 - 8x - (9x^2 - 24x + 16) = -2

Combining terms results in: 2x2+16x16=0-2x^2 + 16x - 16 = 0

Factoring out -2 gives: 2x28x+8=02x^2 - 8x + 8 = 0

Using the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
Where a=2a = 2, b=8b = -8, and c=8c = -8.

Calculating: x=8±(8)242(8)22x = \frac{8 \pm \sqrt{(-8)^2 - 4 \cdot 2 \cdot (-8)}}{2 \cdot 2}
x=8±64+644=8±824x = \frac{8 \pm \sqrt{64 + 64}}{4} = \frac{8 \pm 8\sqrt{2}}{4}
=2±22= 2 \pm 2\sqrt{2}

Thus, we have two values for xx, and substituting them back gives us the corresponding yy values.
The solutions are x1=2+22x_1 = 2 + 2\sqrt{2}, y1=2+22y_1 = 2 + 2\sqrt{2} and x2=222x_2 = 2 - 2\sqrt{2}, y2=222y_2 = 2 - 2\sqrt{2}.

Step 5

1.3.1 Solve for x if $f(x) > 0$

97%

117 rated

Answer

The given function is f(x)=x2+8x+16f(x) = x^2 + 8x + 16. To find where f(x)>0f(x) > 0, we first factor the expression:

f(x)=(x+4)2f(x) = (x + 4)^2

This function is equal to zero when x+4=0x=4x + 4 = 0 \Rightarrow x = -4. Since f(x)f(x) represents a perfect square, it is always non-negative. Thus, f(x)>0f(x) > 0 when: x(,4)(4,)x \in (-\infty, -4) \cup (-4, \infty)
or in simpler terms, xR,x4x \in \mathbb{R}, x \neq -4.

Step 6

1.3.2 For which values of p will $f(x) = p$ have TWO unequal negative roots?

97%

121 rated

Answer

To determine when f(x)=pf(x) = p has two unequal negative roots, we rewrite the function as:

x2+8x+16=px^2 + 8x + 16 = p

Rearranging gives: x2+8x+(16p)=0x^2 + 8x + (16 - p) = 0

For real and unequal roots, the discriminant must be positive:

Δ=b24ac>0\Delta = b^2 - 4ac > 0
Substituting: 824(1)(16p)>08^2 - 4(1)(16 - p) > 0
6464+4p>04p>0p>064 - 64 + 4p > 0\Rightarrow 4p > 0\Rightarrow p > 0

Additionally, since the roots must also be negative, we consider: x=8±644(16p)2x = \frac{-8 \pm \sqrt{64 - 4(16 - p)}}{2} To ensure the roots are negative, we derive through interval tests:

The conditions lead us to: 0<p<160 < p < 16 Thus, the values of pp must satisfy: 0<p<160 < p < 16.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;