Los op vir $x$:
1.1.1 \( (3x - 1)(x + 4) = 0 \)
1.1.2 \( 2x^2 + 9x - 14 = 0 \) (korrek tot TWEE desimale plekke)
1.1.3 \( \sqrt{3 - 26x} = 3x \)
1.1.4 \( (x - 1)(x - 4) = x + 11 \)
1.2 Vereenvoudig volledig:
\( \frac{\sqrt{16x^2} - \sqrt{25x^2}}{\sqrt{x}} \)
1.3 Los gelyktydig op vir $x$ en $y$:
$xy = 9$ en $-2y - 3 = 0$
1.4 Bewys dat \( x^2 + 2xy + y^2 \) nie negatief vir $x, y \in \mathbb{R}$ kan wees nie. - NSC Mathematics - Question 1 - 2018 - Paper 1

Question 1

Los op vir $x$:
1.1.1 \( (3x - 1)(x + 4) = 0 \)
1.1.2 \( 2x^2 + 9x - 14 = 0 \) (korrek tot TWEE desimale plekke)
1.1.3 \( \sqrt{3 - 26x} = 3x \)
1.1.4 \( (x - 1)... show full transcript
Worked Solution & Example Answer:Los op vir $x$:
1.1.1 \( (3x - 1)(x + 4) = 0 \)
1.1.2 \( 2x^2 + 9x - 14 = 0 \) (korrek tot TWEE desimale plekke)
1.1.3 \( \sqrt{3 - 26x} = 3x \)
1.1.4 \( (x - 1)(x - 4) = x + 11 \)
1.2 Vereenvoudig volledig:
\( \frac{\sqrt{16x^2} - \sqrt{25x^2}}{\sqrt{x}} \)
1.3 Los gelyktydig op vir $x$ en $y$:
$xy = 9$ en $-2y - 3 = 0$
1.4 Bewys dat \( x^2 + 2xy + y^2 \) nie negatief vir $x, y \in \mathbb{R}$ kan wees nie. - NSC Mathematics - Question 1 - 2018 - Paper 1
1.1.1 \( (3x - 1)(x + 4) = 0 \)

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To solve ( (3x - 1)(x + 4) = 0 ), we set each factor to zero:
- ( 3x - 1 = 0 ) leading to ( x = \frac{1}{3} )
- ( x + 4 = 0 ) leading to ( x = -4 )
Thus, the solutions are ( x = \frac{1}{3} ) and ( x = -4 ).
1.1.2 \( 2x^2 + 9x - 14 = 0 \) (korrek tot TWEE desimale plekke)

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Using the quadratic formula, ( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} ) where ( a = 2, b = 9, c = -14 ):
-
Calculate the discriminant:
[ b^2 - 4ac = 9^2 - 4(2)(-14) = 81 + 112 = 193 ]
-
Apply the quadratic formula:
[ x = \frac{-9 \pm \sqrt{193}}{4} ]
Thus, the approximate solutions are ( x \approx 1.22 ) and ( x \approx -5.72 ).
1.1.3 \( \sqrt{3 - 26x} = 3x \)

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To solve ( \sqrt{3 - 26x} = 3x ), square both sides:
[ 3 - 26x = 9x^2 ]
Rearranging gives:
[ 9x^2 + 26x - 3 = 0 ]
Using the quadratic formula:
[ x = \frac{-26 \pm \sqrt{26^2 - 4(9)(-3)}}{2(9)} ]
Solve for the roots.
1.1.4 \( (x - 1)(x - 4) = x + 11 \)

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To solve ( (x - 1)(x - 4) = x + 11 ), expand the left side:
[ x^2 - 5x + 4 = x + 11 ]
Rearranging gives:
[ x^2 - 6x - 7 = 0 ]
Using the quadratic formula:
[ x = \frac{6 \pm \sqrt{(-6)^2 - 4(1)(-7)}}{2(1)} ]
Calculate roots.
1.2 Vereenvoudig volledig:
\( \frac{\sqrt{16x^2} - \sqrt{25x^2}}{\sqrt{x}} \)

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Simplifying gives:
[ \frac{4x - 5x}{\sqrt{x}} = \frac{-x}{\sqrt{x}} = -\sqrt{x} ]
1.3 Los gelyktydig op vir $x$ en $y$:
$xy = 9$ en $-2y - 3 = 0$

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
From the second equation, solve for y:
[ -2y = 3 \rightarrow y = -\frac{3}{2} ]
Substitute y into xy=9:
[ x(-\frac{3}{2}) = 9 \rightarrow x = -6 ]
Thus, x=−6 and y=−23.
1.4 Bewys dat \( x^2 + 2xy + y^2 \) nie negatief vir $x, y \in \mathbb{R}$ kan wees nie.

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
We know:[ x^2 \geq 0 \quad y^2 \geq 0 \quad \text{and} \quad 2xy \geq 0 \text{ when } xy \geq 0 ]
Thus, ( x^2 + 2xy + y^2 = (x+y)^2 \geq 0 ) for all real x and y.
Join the NSC students using SimpleStudy...
97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;