Photo AI

Los op vir $x$: 1.1.1 $x^2 - 2x - 24 = 0$ 1.1.2 $2x^2 - 3x - 3 = 0$ (korrek tot TWEE desimale syfers) 1.1.3 $x^2 + 5x - 4 \\leq 0$ 1.1.4 $\\sqrt{28 - 2 - x} = 2$ 1.2 Los geliktydig vir $x$ en $y$ op in: $2y = 3 + x$ en $2xy + 7 = x^2 + 4y^2$ 1.3 Die wortels van 'n vergelyking is $x = \frac{-b \pm \sqrt{b^2 - 4mp}}{2m}$, waar $m$ en $p$ positiewe reële getalle is - NSC Mathematics - Question 1 - 2021 - Paper 1

Question icon

Question 1

Los-op-vir-$x$:--1.1.1-$x^2---2x---24-=-0$---1.1.2-$2x^2---3x---3-=-0$-(korrek-tot-TWEE-desimale-syfers)---1.1.3-$x^2-+-5x---4-\\leq-0$---1.1.4-$\\sqrt{28---2---x}-=-2$--1.2-Los-geliktydig-vir-$x$-en-$y$-op-in:---$2y-=-3-+-x$-en-$2xy-+-7-=-x^2-+-4y^2$----1.3-Die-wortels-van-'n-vergelyking-is-$x-=-\frac{-b-\pm-\sqrt{b^2---4mp}}{2m}$,-waar-$m$-en-$p$-positiewe-reële-getalle-is-NSC Mathematics-Question 1-2021-Paper 1.png

Los op vir $x$: 1.1.1 $x^2 - 2x - 24 = 0$ 1.1.2 $2x^2 - 3x - 3 = 0$ (korrek tot TWEE desimale syfers) 1.1.3 $x^2 + 5x - 4 \\leq 0$ 1.1.4 $\\sqrt{28 - 2 - x} =... show full transcript

Worked Solution & Example Answer:Los op vir $x$: 1.1.1 $x^2 - 2x - 24 = 0$ 1.1.2 $2x^2 - 3x - 3 = 0$ (korrek tot TWEE desimale syfers) 1.1.3 $x^2 + 5x - 4 \\leq 0$ 1.1.4 $\\sqrt{28 - 2 - x} = 2$ 1.2 Los geliktydig vir $x$ en $y$ op in: $2y = 3 + x$ en $2xy + 7 = x^2 + 4y^2$ 1.3 Die wortels van 'n vergelyking is $x = \frac{-b \pm \sqrt{b^2 - 4mp}}{2m}$, waar $m$ en $p$ positiewe reële getalle is - NSC Mathematics - Question 1 - 2021 - Paper 1

Step 1

1.1.1 $x^2 - 2x - 24 = 0$

96%

114 rated

Answer

We start by factoring the quadratic equation:

x22x24=(x6)(x+4)=0x^2 - 2x - 24 = (x - 6)(x + 4) = 0

Solving for xx, we get:

x6=0Rightarrowx=6textandx+4=0Rightarrowx=4x - 6 = 0 \\Rightarrow x = 6 \\ \\text{and} \\ x + 4 = 0 \\Rightarrow x = -4

Thus, the solutions are x=6x = 6 or x=4x = -4.

Step 2

1.1.2 $2x^2 - 3x - 3 = 0$ (korrek tot TWEE desimale syfers)

99%

104 rated

Answer

Using the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Here, a=2a = 2, b=3b = -3, and c=3c = -3:

x=3±(3)24(2)(3)2(2)x = \frac{3 \pm \sqrt{(-3)^2 - 4(2)(-3)}}{2(2)}
=3±9+244=3±334= \frac{3 \pm \sqrt{9 + 24}}{4} = \frac{3 \pm \sqrt{33}}{4}

Calculating the roots:

x1=3+3342.19textandx2=33340.69x_1 = \frac{3 + \sqrt{33}}{4} \approx 2.19 \\ \\text{and} \\ x_2 = \frac{3 - \sqrt{33}}{4} \approx -0.69

Step 3

1.1.3 $x^2 + 5x - 4 \\<0$

96%

101 rated

Answer

Rearranging gives:

x2+5x4=0x^2 + 5x - 4 = 0

Finding critical values using the quadratic formula:

x=5±524(1)(4)2(1)x = \frac{-5 \pm \sqrt{5^2 - 4(1)(-4)}}{2(1)}
=5±25+162=5±412= \frac{-5 \pm \sqrt{25 + 16}}{2} = \frac{-5 \pm \sqrt{41}}{2}

The critical points are approximately:

x=4textandx=1x = -4 \\text{and} \\ x = -1

We test intervals to find where the expression is less than zero, which gives:

x[4,1]x \in [-4, -1]

Step 4

1.1.4 $\sqrt{28 - 2 - x} = 2$

98%

120 rated

Answer

Squaring both sides, we have:

282x=428 - 2 - x = 4

Simplifying gives:

26x=4rightarrowx=2226 - x = 4 \\rightarrow x = 22

Checking for validity:

The expressions under the square root must be non-negative.

Step 5

1.2 Los geliktydig vir $x$ en $y$ op in: $2y = 3 + x$ en $2xy + 7 = x^2 + 4y^2$

97%

117 rated

Answer

From the first equation:

y=3+x2y = \frac{3 + x}{2}

Substituting in the second equation:

2x(3+x2)+7=x2+4(3+x2)22x\left(\frac{3 + x}{2}\right) + 7 = x^2 + 4\left(\frac{3 + x}{2}\right)^2

Solving this system of equations will yield the values for xx and yy.

Step 6

1.3 Bewys dat $x \ne $ nie-reëel getal is.

97%

121 rated

Answer

Given the quadratic equation structure that incorporates mm and pp, we need to show that the discriminant Δ<0\Delta < 0 leads to non-real roots:

Δ=b24mp<0\Delta = b^2 - 4mp < 0

This implies that Δ<0\Delta < 0 leads to non-real (imaginary) roots for xx.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;