Photo AI

Los op vir x: 1.1 2x(x + 1) − 7(x + 1) = 0 1.2 x² − 5x − 1 = 0, korrek tot twee desimale plekke - NSC Mathematics - Question 1 - 2017 - Paper 1

Question icon

Question 1

Los-op-vir-x:--1.1-2x(x-+-1)-−-7(x-+-1)-=-0----1.2-x²-−-5x-−-1-=-0,-korrek-tot-twee-desimale-plekke-NSC Mathematics-Question 1-2017-Paper 1.png

Los op vir x: 1.1 2x(x + 1) − 7(x + 1) = 0 1.2 x² − 5x − 1 = 0, korrek tot twee desimale plekke. 1.3 4x² + 1 ≥ 5x 1.4 5*4**3, 100−2**x1 = 50 000 1.5 Los... show full transcript

Worked Solution & Example Answer:Los op vir x: 1.1 2x(x + 1) − 7(x + 1) = 0 1.2 x² − 5x − 1 = 0, korrek tot twee desimale plekke - NSC Mathematics - Question 1 - 2017 - Paper 1

Step 1

1.1 2x(x + 1) − 7(x + 1) = 0

96%

114 rated

Answer

To solve the equation, we can factor it. First, rewrite it as:

(2x7)(x+1)=0(2x - 7)(x + 1) = 0

Now, set each factor to zero:

  1. 2x7=02x - 7 = 0x = rac{7}{2}
  2. x+1=0x + 1 = 0x=1x = -1

So, the solutions are x = rac{7}{2} or x=1x = -1.

Step 2

1.2 x² − 5x − 1 = 0, korrek tot twee desimale plekke.

99%

104 rated

Answer

Using the quadratic formula:

x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values: a=1a = 1, b=5b = -5, c=1c = -1:

x=5±(5)24(1)(1)2(1)=5±25+42=5±292 x = \frac{5 \pm \sqrt{(-5)^2 - 4(1)(-1)}}{2(1)} = \frac{5 \pm \sqrt{25 + 4}}{2} = \frac{5 \pm \sqrt{29}}{2}

Calculating gives:

  1. x=5.19x = 5.19 (to two decimal places)
  2. x=0.19x = -0.19 (to two decimal places)

Step 3

1.3 4x² + 1 ≥ 5x

96%

101 rated

Answer

Rearranging gives:

4x25x+104x^2 - 5x + 1 ≥ 0

Finding the discriminant:

D=b24ac=(5)24(4)(1)=2516=9D = b^2 - 4ac = (-5)^2 - 4(4)(1) = 25 - 16 = 9

Since D > 0, there are two distinct roots. Setting up:

x=5±92(4) x = \frac{5 \pm \sqrt{9}}{2(4)}

Thus, the critical points are:

  1. x1=1x_1 = 1 and x2=14x_2 = \frac{1}{4}.

Testing intervals shows:

x14 or x1x ≤ \frac{1}{4} \text{ or } x ≥ 1

Step 4

1.4 5*4**3, 100−2**x1 = 50 000

98%

120 rated

Answer

First simplify the equation:

5(64)2x1=500005(64) - 2^{x1} = 50000

Thus,

3202x1=50000320 - 2^{x1} = 50000

Rearranging gives:

2x1=320500002x1=496802^{x1} = 320 - 50000 \Rightarrow 2^{x1} = -49680

Since 2x12^{x1} can't be negative, it shows no real solutions exist.

Step 5

1.5 Los gelijktydig vir x en y op: x = 2y

97%

117 rated

Answer

Substituting x=2yx = 2y into the second equation:

(2y)2+2(2y)yy2=36(2y)^2 + 2(2y) - y - y^2 = 36

Expanding gives:

4y2+4yyy2=363y2+3y36=04y^2 + 4y - y - y^2 = 36\Rightarrow 3y^2 + 3y - 36 = 0

Solving using quadratic formula,

This gives:

  1. y=6y = 6 or y=8y = -8

Then substituting back:

  1. x=12x = 12 or x=16x = -16.

Step 6

1.6 Toon aan dat die wortels van x² − kx + k − 1 = 0 reel en rasioneel is vir alle reële waardes van k.

97%

121 rated

Answer

For the quadratic equation:

ax2+bx+c=0ax^2 + bx + c = 0

The roots are given by:

x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

In this case:

  • a=1a = 1
  • b=kb = -k
  • c=k1c = k - 1 The discriminant is:

Since (k2)2extisnonnegativeforallk(k - 2)^2 ext{ is non-negative for all } k, the roots are always real. The roots are rational as they can be expressed in terms of integers.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;