Photo AI

1.1 Los op vir x, in elk van die volgende: 1.1.1 2x² - 7x = 0 1.1.2 4x⁴ + 11 = 0 ; x ≠ 0 1.1.3 (2x - 1)(x - 3) > 0 1.1.4 3³.3²¹ = 27²ˣ 1.2 Los geliktydig op vir x en y in die volgende vergelykings: 3 + y = 2x 4x² + y² = 2xy + 7 1.3 Gegee: F(x) = -3x⁴ - 2x² + 20 = (x + 2)(x² - 6x + 10) Bewys dat f(x) slegs een reële wortel het. - NSC Mathematics - Question 1 - 2016 - Paper 1

Question icon

Question 1

1.1-Los-op-vir-x,-in-elk-van-die-volgende:--1.1.1-2x²---7x-=-0--1.1.2-4x⁴-+-11-=-0-;-x-≠-0--1.1.3-(2x---1)(x---3)->-0--1.1.4-3³.3²¹-=-27²ˣ--1.2-Los-geliktydig-op-vir-x-en-y-in-die-volgende-vergelykings:--3-+-y-=-2x-4x²-+-y²-=-2xy-+-7--1.3-Gegee:-F(x)-=--3x⁴---2x²-+-20-=-(x-+-2)(x²---6x-+-10)-Bewys-dat-f(x)-slegs-een-reële-wortel-het.-NSC Mathematics-Question 1-2016-Paper 1.png

1.1 Los op vir x, in elk van die volgende: 1.1.1 2x² - 7x = 0 1.1.2 4x⁴ + 11 = 0 ; x ≠ 0 1.1.3 (2x - 1)(x - 3) > 0 1.1.4 3³.3²¹ = 27²ˣ 1.2 Los geliktydig op vir... show full transcript

Worked Solution & Example Answer:1.1 Los op vir x, in elk van die volgende: 1.1.1 2x² - 7x = 0 1.1.2 4x⁴ + 11 = 0 ; x ≠ 0 1.1.3 (2x - 1)(x - 3) > 0 1.1.4 3³.3²¹ = 27²ˣ 1.2 Los geliktydig op vir x en y in die volgende vergelykings: 3 + y = 2x 4x² + y² = 2xy + 7 1.3 Gegee: F(x) = -3x⁴ - 2x² + 20 = (x + 2)(x² - 6x + 10) Bewys dat f(x) slegs een reële wortel het. - NSC Mathematics - Question 1 - 2016 - Paper 1

Step 1

1.1.1 2x² - 7x = 0

96%

114 rated

Answer

To solve the equation, we start by factoring: 2x(x3.5)=02x(x - 3.5) = 0 This gives us two solutions:

  1. When x=0x = 0, and
  2. When x=3.5x = 3.5. Thus, the solutions are x=0x = 0 and x=72x = \frac{7}{2}.

Step 2

1.1.2 4x⁴ + 11 = 0 ; x ≠ 0

99%

104 rated

Answer

Since 4x4+11=04x^4 + 11 = 0 has no real solutions, we can see that 4x4=114x^4 = -11 However, for any real value of xx, 4x44x^4 cannot equal a negative number. Therefore, there are no real solutions for xx.

Step 3

1.1.3 (2x - 1)(x - 3) > 0

96%

101 rated

Answer

To solve the inequality, we first find the critical points by setting each factor to zero: 2x1=0x=122x - 1 = 0 \Rightarrow x = \frac{1}{2} x3=0x=3x - 3 = 0 \Rightarrow x = 3 Creating a sign chart or testing intervals:

  1. For x<12x < \frac{1}{2}, the product is positive.
  2. For 12<x<3\frac{1}{2} < x < 3, the product is negative.
  3. For x>3x > 3, the product is positive. Hence, the solution is x<12x < \frac{1}{2} or x>3x > 3.

Step 4

1.1.4 3³.3²¹ = 27²ˣ

98%

120 rated

Answer

Converting to exponent form: 33+21x=272x3^{3 + 21x} = 27^{2x} Since 27=3327 = 3^3, we rewrite it as: 33+21x=(33)2x=36x3^{3 + 21x} = (3^3)^{2x} = 3^{6x} Thus, setting the exponents equal: 3+21x=6x15x=3x=153 + 21x = 6x\Rightarrow 15x = -3\Rightarrow x = -\frac{1}{5}

Step 5

1.2 Los geliktydig op vir x en y in die volgende vergelykings:

97%

117 rated

Answer

To solve for xx and yy, we can first express yy from the first equation: y=2x3y = 2x - 3 Substituting yy in the second equation: 4x2+(2x3)2=2x(2x3)+74x^2 + (2x - 3)^2 = 2x(2x - 3) + 7 Expanding and simplifying yields: 4x2+(4x212x+9)=4x26x+74x212x+9=6x+74x26x+2=04x^2 + (4x^2 - 12x + 9) = 4x^2 - 6x + 7\Rightarrow 4x^2 - 12x + 9 = -6x + 7\Rightarrow 4x^2 - 6x + 2 = 0 The solutions for xx can be found using the quadratic formula: x=b±b24ac2a=6±(6)24(4)(2)2(4)x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{6 \pm \sqrt{(-6)^2 - 4(4)(2)}}{2(4)}

Step 6

1.3 Gegee: F(x) = -3x⁴ - 2x² + 20 = (x + 2)(x² - 6x + 10)

97%

121 rated

Answer

To show that F(x)F(x) has only one real root, we need to investigate the discriminant of the polynomial x26x+10x² - 6x + 10: D=b24ac=(6)24(1)(10)=3640=4D = b^2 - 4ac = (-6)^2 - 4(1)(10) = 36 - 40 = -4 Since the discriminant is negative, this indicates that there are no real roots for this quadratic, thus F(x)F(x) has only one real root at x=2x = -2.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;