Photo AI

Los op vir $x$: 1.1.1 $$3x^2 + 5x = 0$$ 1.1.2 $$4x^2 + 3x - 5 = 0$$ (answere korrek tot TWEE desimale plekke) 1.1.3 $$(x-1)^2-9 eq 0$$ 1.1.4 $$5^2 - 5^x = 0$$ 1.1.5 $$\frac{x}{\sqrt{20-x}} = 1$$ Los gelyktydig vir $x$ en $y$ op: $$x+y=9$$ en$$2x^2-y^2=7$$ Gegee: $$P = (1-a)(1+a)(1+a^2)(1+a^4)(1+a^{12})$$ en$$T = (1+a)(1+a^2)(1+a^4)$$ Bepaal die waarde van $$P \times T$$ in terme van $a$. - NSC Mathematics - Question 1 - 2024 - Paper 1

Question icon

Question 1

Los-op-vir-$x$:--1.1.1--$$3x^2-+-5x-=-0$$--1.1.2--$$4x^2-+-3x---5-=-0$$-(answere-korrek-tot-TWEE-desimale-plekke)--1.1.3--$$(x-1)^2-9--eq-0$$--1.1.4--$$5^2---5^x-=-0$$--1.1.5--$$\frac{x}{\sqrt{20-x}}-=-1$$--Los-gelyktydig-vir-$x$-en-$y$-op:--$$x+y=9$$-en$$2x^2-y^2=7$$--Gegee:--$$P-=-(1-a)(1+a)(1+a^2)(1+a^4)(1+a^{12})$$-en$$T-=-(1+a)(1+a^2)(1+a^4)$$-Bepaal-die-waarde-van-$$P-\times-T$$-in-terme-van-$a$.-NSC Mathematics-Question 1-2024-Paper 1.png

Los op vir $x$: 1.1.1 $$3x^2 + 5x = 0$$ 1.1.2 $$4x^2 + 3x - 5 = 0$$ (answere korrek tot TWEE desimale plekke) 1.1.3 $$(x-1)^2-9 eq 0$$ 1.1.4 $$5^2 - 5^x = 0... show full transcript

Worked Solution & Example Answer:Los op vir $x$: 1.1.1 $$3x^2 + 5x = 0$$ 1.1.2 $$4x^2 + 3x - 5 = 0$$ (answere korrek tot TWEE desimale plekke) 1.1.3 $$(x-1)^2-9 eq 0$$ 1.1.4 $$5^2 - 5^x = 0$$ 1.1.5 $$\frac{x}{\sqrt{20-x}} = 1$$ Los gelyktydig vir $x$ en $y$ op: $$x+y=9$$ en$$2x^2-y^2=7$$ Gegee: $$P = (1-a)(1+a)(1+a^2)(1+a^4)(1+a^{12})$$ en$$T = (1+a)(1+a^2)(1+a^4)$$ Bepaal die waarde van $$P \times T$$ in terme van $a$. - NSC Mathematics - Question 1 - 2024 - Paper 1

Step 1

1.1.1 $3x^2 + 5x = 0$

96%

114 rated

Answer

To solve the equation, we can factor it: x(3x+5)=0.x(3x + 5) = 0. Setting each factor to zero gives us:

  1. x=0x = 0
  2. 3x+5=0x=53.3x + 5 = 0 \Rightarrow x = -\frac{5}{3}.

Thus, the solutions are x=0x = 0 and x=53x = -\frac{5}{3}.

Step 2

1.1.2 $4x^2 + 3x - 5 = 0$

99%

104 rated

Answer

We will use the quadratic formula: x=b±b24ac2a,x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=4a = 4, b=3b = 3, and c=5c = -5.

Calculating the discriminant: D=324(4)(5)=9+80=89.D = 3^2 - 4(4)(-5) = 9 + 80 = 89.

Thus, x=3±898.x = \frac{-3 \pm \sqrt{89}}{8}.

Calculating the two roots gives us approximate values of x0.80x \approx 0.80 and x1.55x \approx -1.55. Both should be reported to two decimal places.

Step 3

1.1.3 $(x-1)^2 - 9 \neq 0$

96%

101 rated

Answer

Rearranging gives: (x1)29.(x-1)^2 \neq 9. Taking the square root of both sides leads to: x1±3.x - 1 \neq \pm 3. Therefore, we have:

  1. x4x \neq 4
  2. x2.x \neq -2.

Step 4

1.1.4 $5^2 - 5^x = 0$

98%

120 rated

Answer

Rearranging gives: 52=5x.5^2 = 5^x. This implies that: x=2.x = 2.

Additionally, when 5x=05^x = 0 there are no solutions since the function does not equal zero.

Step 5

1.1.5 $\frac{x}{\sqrt{20-x}} = 1$

97%

117 rated

Answer

Isolate the surd: x=20x.x = \sqrt{20-x}. Squaring both sides results in: x2=20x.x^2 = 20 - x. Rearranging gives: x2+x20=0.x^2 + x - 20 = 0. Factoring this we find: (x+5)(x4)=0.(x+5)(x-4) = 0. So, x=4x = 4 or x=5.x = -5.

Step 6

1.2 $x+y=9$ and $2x^2-y^2=7$

97%

121 rated

Answer

From the first equation, we can express yy in terms of xx: y=9x.y = 9 - x.

Substituting into the second equation: 2x2(9x)2=7.2x^2 - (9-x)^2 = 7. This simplifies to: 2x2(8118x+x2)=7.2x^2 - (81 - 18x + x^2) = 7. Combining like terms leads to: x2+18x88=0.x^2 + 18x - 88 = 0. Applying the quadratic formula: x=18±(18)24(1)(88)2(1).x = \frac{-18 \pm \sqrt{(18)^2 - 4(1)(-88)}}{2(1)}. Calculating the solutions gives us two xx-values. We then substitute back into y=9xy = 9 - x to find the corresponding y-values.

Step 7

1.3 $P = (1-a)(1+a)(1+a^2)(1+a^4)(1+a^{12})$ and $T = (1+a)(1+a^2)(1+a^4)$

96%

114 rated

Answer

To find P×TP \times T, we first express both in a product: P×T=[(1a)(1+a)(1+a2)(1+a4)(1+a12)]×[(1+a)(1+a2)(1+a4)].P \times T = [(1-a)(1+a)(1+a^2)(1+a^4)(1+a^{12})] \times [(1+a)(1+a^2)(1+a^4)].

This expands and factors appropriately, leading to the final expression simplified in terms of aa.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;