Los op vir x:
1.1.1
$x^2 - 7x + 12 = 0$
1.1.2
$x(3x + 5) = 1$ (korrek tot TWEE desimale syfers)
1.1.3
$x^2 - 2x + 15$
1.1.4
$ ext{√}(2(1-x)) = x - 1$
Los gelijktidig vir x en y op:
1.2
$3^{x+y} = 27$ en $x^2 + y^2 = 17$
1.3
Bepaal, sonder die gebruik van 'n sakrekenaar, die waarde van:
$rac{1}{ ext{√}1 + ext{√}2 + ext{√}3 + ext{√}4 + ext{...} + rac{1}{ ext{√}99 + ext{√}100}$ - NSC Mathematics - Question 1 - 2023 - Paper 1
Question 1
Los op vir x:
1.1.1
$x^2 - 7x + 12 = 0$
1.1.2
$x(3x + 5) = 1$ (korrek tot TWEE desimale syfers)
1.1.3
$x^2 - 2x + 15$
1.1.4
$ ext{√}(2(1-x)) = x - 1$
Lo... show full transcript
Worked Solution & Example Answer:Los op vir x:
1.1.1
$x^2 - 7x + 12 = 0$
1.1.2
$x(3x + 5) = 1$ (korrek tot TWEE desimale syfers)
1.1.3
$x^2 - 2x + 15$
1.1.4
$ ext{√}(2(1-x)) = x - 1$
Los gelijktidig vir x en y op:
1.2
$3^{x+y} = 27$ en $x^2 + y^2 = 17$
1.3
Bepaal, sonder die gebruik van 'n sakrekenaar, die waarde van:
$rac{1}{ ext{√}1 + ext{√}2 + ext{√}3 + ext{√}4 + ext{...} + rac{1}{ ext{√}99 + ext{√}100}$ - NSC Mathematics - Question 1 - 2023 - Paper 1
Step 1
1.1.1
$x^2 - 7x + 12 = 0$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve for x, we can factor the quadratic expression:
(x - 3)(x - 4) = 0
ext{Thus, } x = 3 ext{ or } x = 4.
\end{align*}$$
Step 2
1.1.2
$x(3x + 5) = 1$ (korrek tot TWEE desimale syfers)
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Rearranging gives:
3x^2 + 5x - 1 = 0
\end{align*}$$
Using the quadratic formula:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
Where $a = 3$, $b = 5$, and $c = -1$:
$$\begin{align*}
b^2 - 4ac & = 5^2 - 4(3)(-1) = 25 + 12 = 37,
\end{align*}$$
So:
$$x = \frac{-5 \pm \sqrt{37}}{6}$$
Calculating gives:
$$x \approx 0.18 ext{ or } x \approx -1.85.$$
Step 3
1.1.3
$x^2 - 2x + 15$
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Since this is a quadratic that does not factor nicely, we can find the vertex or simply identify that the discriminant (D) is negative:
D=(−2)2−4(1)(15)=4−60=−56,
This indicates no real roots.
Step 4
1.1.4
$ ext{√}(2(1-x)) = x - 1$
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Sign up now to view full answer, or log in if you already have an account!
Answer
Rationalizing the expression breaks this down:
The sum reduces to:
=−1+2−2+3−3+4+...+101
Adding terms leads to the conclusion that the overall result sums to 9.