Photo AI

Los op vir $x$: 1.1.1 $(x–3)(x+1)=0$ 1.1.2 $ ext{sqrt}{x}=512$ 1.1.3 $x(x–4) < 0$ Gegee: 1.2 $f(x) = x^2 - 5x + 2$ 1.2.1 Los op vir $x$ as $f(x) = 0$ 1.2.2 Vir watter waardes van $c$ sal $f(x) = c$ geen reële wortels hê nie? 1.3 Los op vir $x$ en $y$: $x = 2y + 2$ $x^2 - 2xy + 3y^2 = 4$ 1.4 Bereken die maksimum waarde van $S$ as $S = rac{6}{x^2 + 2}$ - NSC Mathematics - Question 1 - 2017 - Paper 1

Question icon

Question 1

Los-op-vir-$x$:--1.1.1--$(x–3)(x+1)=0$--1.1.2--$-ext{sqrt}{x}=512$--1.1.3--$x(x–4)-<-0$--Gegee:--1.2--$f(x)-=-x^2---5x-+-2$--1.2.1--Los-op-vir-$x$-as-$f(x)-=-0$--1.2.2--Vir-watter-waardes-van-$c$-sal-$f(x)-=-c$-geen-reële-wortels-hê-nie?--1.3--Los-op-vir-$x$-en-$y$:----$x-=-2y-+-2$----$x^2---2xy-+-3y^2-=-4$--1.4--Bereken-die-maksimum-waarde-van-$S$-as-$S-=--rac{6}{x^2-+-2}$-NSC Mathematics-Question 1-2017-Paper 1.png

Los op vir $x$: 1.1.1 $(x–3)(x+1)=0$ 1.1.2 $ ext{sqrt}{x}=512$ 1.1.3 $x(x–4) < 0$ Gegee: 1.2 $f(x) = x^2 - 5x + 2$ 1.2.1 Los op vir $x$ as $f(x) = 0$ 1.2... show full transcript

Worked Solution & Example Answer:Los op vir $x$: 1.1.1 $(x–3)(x+1)=0$ 1.1.2 $ ext{sqrt}{x}=512$ 1.1.3 $x(x–4) < 0$ Gegee: 1.2 $f(x) = x^2 - 5x + 2$ 1.2.1 Los op vir $x$ as $f(x) = 0$ 1.2.2 Vir watter waardes van $c$ sal $f(x) = c$ geen reële wortels hê nie? 1.3 Los op vir $x$ en $y$: $x = 2y + 2$ $x^2 - 2xy + 3y^2 = 4$ 1.4 Bereken die maksimum waarde van $S$ as $S = rac{6}{x^2 + 2}$ - NSC Mathematics - Question 1 - 2017 - Paper 1

Step 1

1.1.1 Los op vir $x$ as $(x–3)(x+1)=0$

96%

114 rated

Answer

To solve for xx in the equation (x3)(x+1)=0(x–3)(x+1)=0, we use the zero-product property, which states that if a product of two factors equals zero, then at least one of the factors must be zero.

Setting each factor to zero gives:

  • x3=0x=3x - 3 = 0 \Rightarrow x = 3
  • x+1=0x=1x + 1 = 0 \Rightarrow x = -1

Thus, the solutions are x=3x = 3 or x=1x = -1.

Step 2

1.1.2 Los op vir $x$ as $ ext{sqrt}{x}=512$

99%

104 rated

Answer

To isolate xx, we first square both sides of the equation:

sqrtx=512x=5122\text{sqrt}{x}=512 \Rightarrow x = 512^2

Calculating gives:

x=262144x = 262144

Thus, the solution is x=64x = 64.

Step 3

1.1.3 Los op vir $x$ as $x(x–4) < 0$

96%

101 rated

Answer

To solve the inequality x(x4)<0x(x–4) < 0, we find the critical values by solving x(x4)=0x(x–4) = 0:

  • x=0x = 0
  • x=4x = 4

Next, we test intervals between these critical values:

  • For x<0x < 0, choose x=1x = -1: (1)(14)=5>0(-1)(-1-4) = 5 > 0
  • For 0<x<40 < x < 4, choose x=2x = 2: (2)(24)=4<0(2)(2-4) = -4 < 0
  • For x>4x > 4, choose x=5x = 5: (5)(54)=5>0(5)(5-4) = 5 > 0

Thus, the solution for the inequality is 0<x<40 < x < 4, or x(0,4)x \in (0, 4).

Step 4

1.2.1 Los op vir $x$ as $f(x) = 0$

98%

120 rated

Answer

To find the roots of the function f(x)=x25x+2f(x) = x^2 - 5x + 2, we set it to zero:

x25x+2=0x^2 - 5x + 2 = 0

Using the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

after substituting a=1,b=5,c=2a=1, b=-5, c=2 gives:

x=5±(5)24(1)(2)2(1)x = \frac{5 \pm \sqrt{(-5)^2 - 4(1)(2)}}{2(1)}

which simplifies to:

x=5±2582=5±172x = \frac{5 \pm \sqrt{25 - 8}}{2} = \frac{5 \pm \sqrt{17}}{2}

Calculating the values gives:

x0.44 or x4.56x \approx 0.44 \text{ or } x \approx 4.56.

Step 5

1.2.2 Vir watter waardes van $c$ sal $f(x) = c$ geen reële wortels hê nie?

97%

117 rated

Answer

To determine when the function f(x)=x25x+2f(x) = x^2 - 5x + 2 has no real roots, we analyze the discriminant given by D=b24acD = b^2 - 4ac:

  • For no real roots, D<0D < 0. Here, that means:

(5)24(1)(c)<0254c<0(-5)^2 - 4(1)(c) < 0 \Rightarrow 25 - 4c < 0

Solving gives:

25<4cc>254=6.2525 < 4c \Rightarrow c > \frac{25}{4} = 6.25

Therefore, f(x)=cf(x) = c has no real roots for c>6.25c > 6.25.

Step 6

1.3 Los op vir $x$ en $y$: $x = 2y + 2$ en $x^2 - 2xy + 3y^2 = 4$

97%

121 rated

Answer

First, substitute xx in the second equation:

x22xy+3y2=4x^2 - 2xy + 3y^2 = 4

Replacing xx gives:

(2y+2)22(2y+2)y+3y2=4(2y + 2)^2 - 2(2y + 2)y + 3y^2 = 4

Expanding yields:

4y2+8y+4(4y2+4y)+3y2=44y^2 + 8y + 4 - (4y^2 + 4y) + 3y^2 = 4

Combine like terms:

3y2+4y+44=03y2+4y=03y^2 + 4y + 4 - 4 = 0 \Rightarrow 3y^2 + 4y = 0

Factoring gives:

y(3y+4)=0y=0 or y=43y(3y + 4) = 0 \Rightarrow y = 0 \text{ or } y = -\frac{4}{3}

Thus, with y=0y = 0, x=2(0)+2=2x = 2(0) + 2 = 2. For y=43y = -\frac{4}{3}:

i gives: x=2(43)+2=83+2=23x = 2\left(-\frac{4}{3}\right) + 2 = -\frac{8}{3} + 2 = \frac{-2}{3}

Therefore, the pairs are (2,0)(2, 0) and (23,43)(\frac{-2}{3}, -\frac{4}{3}).

Step 7

1.4 Bereken die maksimum waarde van $S$ as $S = \frac{6}{x^2 + 2}$

96%

114 rated

Answer

To find the maximum value of the function S=6x2+2S = \frac{6}{x^2 + 2}, we take the derivative and set it to zero:

S=12x(x2+2)2S' = -\frac{12x}{(x^2 + 2)^2}

Setting S=0S' = 0 results in:

12x=0x=0-12x = 0 \Rightarrow x = 0.

To find the maximum, we evaluate SS at critical points:

S(0)=602+2=3S(0) = \frac{6}{0^2 + 2} = 3

Thus, the maximum value of SS is 3.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;