Photo AI

8.1 Voltooi die volgende: Die oorstane hoek van h koordvierhoek is … (1) 8.2 In die diagram, is EF en EG raaklyne aan die sirkel met middelpunt O - NSC Mathematics - Question 8 - 2016 - Paper 2

Question icon

Question 8

8.1-Voltooi-die-volgende:-Die-oorstane-hoek-van-h-koordvierhoek-is-…-(1)--8.2-In-die-diagram,-is-EF-en-EG-raaklyne-aan-die-sirkel-met-middelpunt-O-NSC Mathematics-Question 8-2016-Paper 2.png

8.1 Voltooi die volgende: Die oorstane hoek van h koordvierhoek is … (1) 8.2 In die diagram, is EF en EG raaklyne aan die sirkel met middelpunt O. FH || EK, EK sny ... show full transcript

Worked Solution & Example Answer:8.1 Voltooi die volgende: Die oorstane hoek van h koordvierhoek is … (1) 8.2 In die diagram, is EF en EG raaklyne aan die sirkel met middelpunt O - NSC Mathematics - Question 8 - 2016 - Paper 2

Step 1

FOGE is koordvierhoek is.

96%

114 rated

Answer

To show that FOGE is a cyclic quadrilateral, we need to prove that the opposite angles are supplementary. Since EF is a radius of the circle, and EG is also a radius, we have:

  • Angle EFO = 90° (angle at radius and tangent)
  • Angle EGO = 90° (angle at radius and tangent)

Thus, we have:

EFO+EGO=90°+90°=180°EFO + EGO = 90° + 90° = 180°

This confirms that FOGE is a cyclic quadrilateral.

Step 2

EG h raaklyn aan sirkel GJK is.

99%

104 rated

Answer

To show that EG is a tangent to circle GJK, we can use the property that the angle between a tangent and the radius at the point of contact is 90°.

Since FH is parallel to EK (given) and we have:

  • Angle G1 = Angle H = x (corresponding angles)
  • Angle R1 = R1 (Equal segments)

This implies that EG meets circle GJK at a right angle. Hence, EG is a tangent to the circle.

Step 3

FEG = 180° - 2x.

96%

101 rated

Answer

For the angle FEG:

Given that angles FEG and EHG are angles in the cyclic quadrilateral FOGE, and the angles in a cyclic quadrilateral are supplementary, we can state:

  • Angle FEG + Angle EHG = 180°
  • We already established that Angle EHG = 2x (since angle at the circle subtends the same arc)

Thus:

FEG=180°EHG=180°2xFEG = 180° - EHG = 180° - 2x

This completes the proof.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;