Photo AI

8.1 Bepaal f'(x) vanuit eerste beginsels indien f(x) = \frac{1}{x} - NSC Mathematics - Question 8 - 2024 - Paper 1

Question icon

Question 8

8.1-Bepaal-f'(x)-vanuit-eerste-beginsels-indien-f(x)-=-\frac{1}{x}-NSC Mathematics-Question 8-2024-Paper 1.png

8.1 Bepaal f'(x) vanuit eerste beginsels indien f(x) = \frac{1}{x}. 8.2 Bepaal: 8.2.1 \frac{d}{dx}(\sqrt{4x^4 + 2\sqrt{2}x^2}) 8.2.2 g(x) indien g(x) = \frac{3x^4... show full transcript

Worked Solution & Example Answer:8.1 Bepaal f'(x) vanuit eerste beginsels indien f(x) = \frac{1}{x} - NSC Mathematics - Question 8 - 2024 - Paper 1

Step 1

Bepaal f'(x) vanuit eerste beginsels indien f(x) = \frac{1}{x}

96%

114 rated

Answer

Om f'(x) te bepaal vanuit eerste beginsels, gebruik die definisie van die afgeleide:

f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}

Hier is (f(x) = \frac{1}{x}), dan is:
f(x+h)=1x+hf(x+h) = \frac{1}{x+h}

Stap 1: Bereken (f(x+h) - f(x)):

f(x+h)f(x)=1x+h1x=x(x+h)x(x+h)=hx(x+h)f(x+h) - f(x) = \frac{1}{x+h} - \frac{1}{x} = \frac{x - (x+h)}{x(x+h)} = \frac{-h}{x(x+h)}

Stap 2: Deel deur (h):
f(x+h)f(x)h=1x(x+h)\frac{f(x+h) - f(x)}{h} = \frac{-1}{x(x+h)}

Stap 3: Neem die limiet as (h) neig na 0:

f(x)=limh01x(x+h)=1x2f'(x) = \lim_{h \to 0} \frac{-1}{x(x+h)} = \frac{-1}{x^2}

So, (f'(x) = -\frac{1}{x^2}$$.

Step 2

Bepaal: 8.2.1 \frac{d}{dx}(\sqrt{4x^4 + 2\sqrt{2}x^2})

99%

104 rated

Answer

Om (\frac{d}{dx}(\sqrt{4x^4 + 2\sqrt{2}x^2})) te bepaal, gebruik die kettingreël:

Stap 1: Neem die afgeleide van die binneste funksie:

ddx(4x4+22x2)=16x3+222x=16x3+42x\frac{d}{dx}(4x^4 + 2\sqrt{2}x^2) = 16x^3 + 2\sqrt{2} \cdot 2x = 16x^3 + 4\sqrt{2}x

Stap 2: Neem die afgeleide van die buitensste funksie:

124x4+22x2(16x3+42x)\frac{1}{2\sqrt{4x^4 + 2\sqrt{2}x^2}} \cdot (16x^3 + 4\sqrt{2}x)

Die finale afgeleide is:

2x34x4+22x2\frac{2x^3}{\sqrt{4x^4 + 2\sqrt{2}x^2}}.

Step 3

Bepaal: 8.2.2 g(x) indien g(x) = \frac{3x^4 - 4x^2 + 6}{x^2}

96%

101 rated

Answer

Om g(x) te vereenvoudig, verdeel elke term deur (x^2):

g(x)=3x4x24x2x2+6x2=3x24+6x2g(x) = \frac{3x^4}{x^2} - \frac{4x^2}{x^2} + \frac{6}{x^2} = 3x^2 - 4 + \frac{6}{x^2}
Die afgeleide van g(x) is dan:

g(x)=ddx(3x24+6x2)=6x012x3=6x12x3g'(x) = \frac{d}{dx}\left(3x^2 - 4 + 6x^{-2}\right) = 6x - 0 - 12x^{-3} = 6x - \frac{12}{x^3}.

Step 4

Bepaal die waardes van b en c

98%

120 rated

Answer

Gegee is dat die raaklyn aan f(x) = 3x^3 + bx + c by x = 1, die regte lyn is gegee deur y = 9x - 9.
Stap 1: Vind (f(1)):

f(1)=3(1)3+b(1)+c=3+b+cf(1) = 3(1)^3 + b(1) + c = 3 + b + c
Stap 2: Gebruik die punt om die y-waarde van die raaklyn te kry:

f(1)=9(1)9=0f(1) = 9(1) - 9 = 0
Daarom:

3+b+c=0b+c=33 + b + c = 0 \Rightarrow b + c = -3
Stap 3: Bereken die afgeleide:

f(x)=9x2+bf'(x) = 9x^2 + b
Stap 4: Gebruik die afgeleide om die helling by (x=1) te kry:

f(1)=9(1)2+b=9+bf'(1) = 9(1)^2 + b = 9 + b
Stap 5: Hierdie moet gelyk wees aan die helling van die raaklyn, wat 9 is:

9+b=9b=09 + b = 9 \Rightarrow b = 0
Stap 6: Gebruik (b = 0) in (b + c = -3):
0+c=3c=30 + c = -3 \Rightarrow c = -3
Die waarde van b is 0 en die waarde van c is -3.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;