Photo AI

‘n Koeldrankblikkie het ‘n volume van 340 cm³, ‘n hoogte van h cm en ‘n radius van r cm - NSC Mathematics - Question 9 - 2016 - Paper 1

Question icon

Question 9

‘n-Koeldrankblikkie-het-‘n-volume-van-340-cm³,-‘n-hoogte-van-h-cm-en-‘n-radius-van-r-cm-NSC Mathematics-Question 9-2016-Paper 1.png

‘n Koeldrankblikkie het ‘n volume van 340 cm³, ‘n hoogte van h cm en ‘n radius van r cm. 9.1 Druk h in terme van r uit. 9.2 Toorn aan dat die buite-oppervlakte van... show full transcript

Worked Solution & Example Answer:‘n Koeldrankblikkie het ‘n volume van 340 cm³, ‘n hoogte van h cm en ‘n radius van r cm - NSC Mathematics - Question 9 - 2016 - Paper 1

Step 1

9.1 Druk h in terme van r uit.

96%

114 rated

Answer

To find the height h in terms of the radius r, we start from the volume formula for a cylinder, which states that the volume V is given by:

V=extBaseArea×extHeight=πr2hV = ext{Base Area} \times ext{Height} = \pi r^2 h

Substituting the given volume of 340 cm³:

340=πr2h340 = \pi r^2 h

To solve for h, we isolate it:

h=340πr2h = \frac{340}{\pi r^2}

Step 2

9.2 Toorn aan dat die buite-oppervlakte van die blikkie gegee word deur A(r) = 2\pi r² + 680r⁻¹.

99%

104 rated

Answer

The surface area A of the cylinder consists of the area of the top and bottom circles and the lateral surface area:

A=2πr2+2πrhA = 2\pi r^2 + 2\pi rh

By substituting the expression found in 9.1 for h, we have:

A=2πr2+2πr(340πr2)A = 2\pi r^2 + 2\pi r \left(\frac{340}{\pi r^2}\right)

Simplifying this:

A(r)=2πr2+6801rA(r) = 2\pi r^2 + 680\cdot \frac{1}{r}

Following this, we can simplify to the form given in the question.

Step 3

9.3 Bepaal die radius van die blikkie wat ‘n minimum buite-oppervlakte sal verseker.

96%

101 rated

Answer

To find the radius that minimizes the surface area, we need to derive A with respect to r and set the derivative to zero:

A(r)=4πr680r2A'(r) = 4\pi r - 680 r^{-2}

Setting the derivative to zero for minimization:

4πr680r2=04\pi r - \frac{680}{r^2} = 0

Rearranging gives:

4πr=680r24\pi r = \frac{680}{r^2}

Multiplying through by r² leads to:

4πr3=6804\pi r^3 = 680

Solving for r, we have:

r3=6804πr^3 = \frac{680}{4\pi}

Taking the cube root:

r=6804π3r3.78extcmr = \sqrt[3]{\frac{680}{4\pi}} \\ r \approx 3.78 ext{ cm}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;