Photo AI

Determine $f^{\prime}(x)$ from first principles if $f(x)=-2x^{2}-1$ - NSC Mathematics - Question 7 - 2023 - Paper 1

Question icon

Question 7

Determine-$f^{\prime}(x)$-from-first-principles-if-$f(x)=-2x^{2}-1$-NSC Mathematics-Question 7-2023-Paper 1.png

Determine $f^{\prime}(x)$ from first principles if $f(x)=-2x^{2}-1$. Determine: 7.2.1 $f^{\prime}(x)$, if it is given that $f(x)=-2x^{2}+3x^{2}$ 7.2.2 $\frac{dy}... show full transcript

Worked Solution & Example Answer:Determine $f^{\prime}(x)$ from first principles if $f(x)=-2x^{2}-1$ - NSC Mathematics - Question 7 - 2023 - Paper 1

Step 1

Determine $f^{\prime}(x)$ from first principles if $f(x)=-2x^{2}-1$

96%

114 rated

Answer

To find the derivative from first principles, we use the definition:

f(x)=limh0f(x+h)f(x)hf^{\prime}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
Substituting for f(x)f(x):
f(x+h)=2(x+h)21=2(x2+2xh+h2)1=2x24xh2h21f(x+h) = -2(x+h)^{2} - 1 = -2(x^{2} + 2xh + h^{2}) - 1 = -2x^{2} - 4xh - 2h^{2} - 1
Now, substituting into the derivative formula:
f(x)=limh0(2x24xh2h21)(2x21)hf^{\prime}(x) = \lim_{h \to 0} \frac{(-2x^{2} - 4xh - 2h^{2} - 1) - (-2x^{2} - 1)}{h}
Simplifying:
f(x)=limh04xh2h2h=limh0(4x2h)f^{\prime}(x) = \lim_{h \to 0} \frac{-4xh - 2h^{2}}{h} = \lim_{h \to 0} (-4x - 2h)
Taking the limit as h0h \to 0:
f(x)=4xf^{\prime}(x) = -4x

Step 2

Determine $f^{\prime}(x)$, if it is given that $f(x)=-2x^{2}+3x^{2}$

99%

104 rated

Answer

We first simplify f(x)f(x):
f(x)=2x2+3x2=x2f(x) = -2x^{2} + 3x^{2} = x^{2}
Now, calculating the derivative:
f(x)=2xf^{\prime}(x) = 2x

Step 3

$\frac{dy}{dx}$ if $y=2x+\frac{1}{\sqrt{4x}}$

96%

101 rated

Answer

To find dydx\frac{dy}{dx}, we differentiate each term:
y=2x+14x=2x+12xy = 2x + \frac{1}{\sqrt{4x}} = 2x + \frac{1}{2\sqrt{x}} The derivative is:
dydx=214x32\frac{dy}{dx} = 2 - \frac{1}{4}x^{-\frac{3}{2}}

Step 4

Determine the values of $x$ for which $f$ is concave down.

98%

120 rated

Answer

A function is concave down when its second derivative is negative.
From the previous step, we have:
f(x)=4xf^{\prime}(x) = -4x
Calculating the second derivative:
f(x)=4f^{\prime\prime}(x) = -4
Since f(x)f^{\prime\prime}(x) is always negative, ff is concave down for all xx.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;