Photo AI

Given $f(x) = 3 - 2x^2$ - NSC Mathematics - Question 8 - 2017 - Paper 1

Question icon

Question 8

Given-$f(x)-=-3---2x^2$-NSC Mathematics-Question 8-2017-Paper 1.png

Given $f(x) = 3 - 2x^2$. Determine $f'(x)$, using first principles. Determine $ rac{dy}{dx}$ if $y = \frac{12x^2 + 2x + 1}{6x}$. The function $f(x) = x^3 + bx^2 + ... show full transcript

Worked Solution & Example Answer:Given $f(x) = 3 - 2x^2$ - NSC Mathematics - Question 8 - 2017 - Paper 1

Step 1

Given $f(x) = 3 - 2x^2$. Determine $f'(x)$, using first principles.

96%

114 rated

Answer

To find the derivative using first principles, we apply the definition of the derivative:

f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}

Substituting in the function:

f(x+h)=32(x+h)2=32(x2+2xh+h2)=32x24xh2h2f(x+h) = 3 - 2(x+h)^2 = 3 - 2(x^2 + 2xh + h^2) = 3 - 2x^2 - 4xh - 2h^2

Then,

f(x+h)f(x)=(32x24xh2h2)(32x2)=4xh2h2f(x+h) - f(x) = (3 - 2x^2 - 4xh - 2h^2) - (3 - 2x^2) = -4xh - 2h^2

Now substituting back into the limit:

f(x)=limh04xh2h2h=limh0(4x2h)=4xf'(x) = \lim_{h \to 0} \frac{-4xh - 2h^2}{h} = \lim_{h \to 0} (-4x - 2h) = -4x

Thus, the derivative is:
f(x)=4xf'(x) = -4x

Step 2

Determine $\frac{dy}{dx}$ if $y = \frac{12x^2 + 2x + 1}{6x}$.

99%

104 rated

Answer

To find rac{dy}{dx}, we apply the quotient rule since we have a quotient of functions:

If y=uvy = \frac{u}{v}, then:

dydx=vdudxudvdxv2\frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}

Given:

  • u=12x2+2x+1u = 12x^2 + 2x + 1
  • v=6xv = 6x

Calculating the derivatives:

  • rac{du}{dx} = 24x + 2
  • rac{dv}{dx} = 6

Now substituting these values into the quotient rule formula:

dydx=(6x)(24x+2)(12x2+2x+1)(6)(6x)2\frac{dy}{dx} = \frac{(6x)(24x + 2) - (12x^2 + 2x + 1)(6)}{(6x)^2}

Simplifying:

  • =144x2+12x72x212x636x2=72x2636x2=2112x2= \frac{144x^2 + 12x - 72x^2 - 12x - 6}{36x^2} = \frac{72x^2 - 6}{36x^2} = 2 - \frac{1}{12x^2}

Thus, rac{dy}{dx} = 2 - \frac{1}{12x^2}.

Step 3

The function $f(x) = x^3 + bx^2 + cx - 4$ has a point of inflection at $(2; 4)$. Calculate the values of $b$ and $c.$

96%

101 rated

Answer

To find the values of bb and cc, we start by noting that a point of inflection occurs where the second derivative changes sign:

  1. First, find the first derivative: f(x)=3x2+2bx+cf'(x) = 3x^2 + 2bx + c

  2. Find the second derivative: f(x)=6x+2bf''(x) = 6x + 2b

Since we have a point of inflection at x=2x = 2:

  • We set f(2)=0f''(2) = 0:
    6(2)+2b=06(2) + 2b = 0
ightarrow 2b = -12 ightarrow b = -6$$ 3. We also know that $f(2) = 4$: $$f(2) = 2^3 + b(2^2) + c(2) - 4 = 4$$ $$8 + 4b + 2c - 4 = 4$$ $$8 - 24 + 2c - 4 = 4$$ $$2c - 20 = 4 ightarrow 2c = 24 ightarrow c = 12$$ Thus, the values of $b$ and $c$ are: $b = -6$ and $c = 12$.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;