10.1 Die grafiek van $f(x) = ax^3 + bx^2 + cx + d$ het twee draai punte - NSC Mathematics - Question 10 - 2021 - Paper 1
Question 10
10.1 Die grafiek van $f(x) = ax^3 + bx^2 + cx + d$ het twee draai punte.
Die volgende inligting oor $f$ word ook gegee:
- $f(2) = 0$
- Die $x$-as is 'n raaklyn aan... show full transcript
Worked Solution & Example Answer:10.1 Die grafiek van $f(x) = ax^3 + bx^2 + cx + d$ het twee draai punte - NSC Mathematics - Question 10 - 2021 - Paper 1
Step 1
10.2.1 Bewys dat die area van die geskatteerde gebied gegee word deur:
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find the area of the shaded segment in the semicircle defined by the coordinates given, we use the formula for the area of a segment of a circle. The area, Asegment, of the segment can be calculated by subtracting the area of triangle ABO from the area of the sector:
Area of sector AOB:
Areasector=41π(x−x2)2
Area of triangle ABO:
Areatriangle=21(x2−x)
Therefore, the area of the shaded region is given by:
Areashaded=Areasector−Areatriangle=41π(x−x2)2−21(x2−x)
Step 2
10.2.2 Bewys dat die area van die geskatteerde gebied gegee word deur:
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
We continue the process of calculating area using integration. Given the function defined in segment 10.2.1, we derive the expression capturing the area of the shaded region:
A=4π−2(4x2−6x2+2x)
By factoring and simplifying, we can determine critical points for the area calculations. After identification of the area component from 0 to 1, we evaluate:
If x=0 or x=1, the area would yield zero.
For f′, when x=2, compute:
f′(2)=4(4−6+2)
which helps confirm the existence of shaded regions, reinforcing our understanding about the area geometrically.