Photo AI

Bepaal $f'(x)$ vanuit eerste beginels indien $f(x) = -4x^2$ Bepaal: 7.2.1 $f'(x)$ indien $f(x) = 2x^3 - 3x$ 7.2.2 $D_rig( rac{1}{ oot{3}{x^2} + 2x^5}ig)$ Vir watter waardes van $x$ sal die raaklyn aan $f(x) = -2x^2 + 8x$ 'n positieve helling hê? - NSC Mathematics - Question 7 - 2023 - Paper 1

Question icon

Question 7

Bepaal-$f'(x)$-vanuit-eerste-beginels-indien-$f(x)-=--4x^2$--Bepaal:--7.2.1-$f'(x)$-indien-$f(x)-=-2x^3---3x$--7.2.2-$D_rig(-rac{1}{-oot{3}{x^2}-+-2x^5}ig)$--Vir-watter-waardes-van-$x$-sal-die-raaklyn-aan-$f(x)-=--2x^2-+-8x$-'n-positieve-helling-hê?-NSC Mathematics-Question 7-2023-Paper 1.png

Bepaal $f'(x)$ vanuit eerste beginels indien $f(x) = -4x^2$ Bepaal: 7.2.1 $f'(x)$ indien $f(x) = 2x^3 - 3x$ 7.2.2 $D_rig( rac{1}{ oot{3}{x^2} + 2x^5}ig)$ Vir w... show full transcript

Worked Solution & Example Answer:Bepaal $f'(x)$ vanuit eerste beginels indien $f(x) = -4x^2$ Bepaal: 7.2.1 $f'(x)$ indien $f(x) = 2x^3 - 3x$ 7.2.2 $D_rig( rac{1}{ oot{3}{x^2} + 2x^5}ig)$ Vir watter waardes van $x$ sal die raaklyn aan $f(x) = -2x^2 + 8x$ 'n positieve helling hê? - NSC Mathematics - Question 7 - 2023 - Paper 1

Step 1

Bepaal $f'(x)$ vanuit eerste beginels indien $f(x) = -4x^2$

96%

114 rated

Answer

To find the derivative f(x)f'(x), we apply the definition of the derivative: f'(x) = rac{f(x+h) - f(x)}{h} Substituting f(x)=4x2f(x) = -4x^2: f'(x) = rac{-4(x+h)^2 - (-4x^2)}{h} This simplifies to: f'(x) = rac{-4(x^2 + 2xh + h^2) + 4x^2}{h} = rac{-8xh - 4h^2}{h} Further simplification gives: f(x)=8xf'(x) = -8x Thus, the derivative is: f(x)=8xf'(x) = -8x

Step 2

Bepaal: 7.2.1 $f'(x)$ indien $f(x) = 2x^3 - 3x$

99%

104 rated

Answer

To determine the derivative: f(x)=6x23f'(x) = 6x^2 - 3

Step 3

Bepaal: 7.2.2 $D_rig( rac{1}{ oot{3}{x^2} + 2x^5}ig)$

96%

101 rated

Answer

To find the domain, we need to ensure the denominator is not zero:

oot{3}{x^2} + 2x^5 eq 0$$ Setting the equation to zero, we find the critical points and test intervals for valid solutions. This leads to critical values where the expression is defined excluding $x = 0$ and other potential roots.

Step 4

Vir watter waardes van $x$ sal die raaklyn aan $f(x) = -2x^2 + 8x$ 'n positieve helling hê?

98%

120 rated

Answer

First, we determine the derivative: f(x)=4x+8f'(x) = -4x + 8 To find where the slope is positive, we set: 4x+8>0-4x + 8 > 0 Solving this inequality gives: x<2x < 2 Therefore, the values for xx where the tangent line has a positive slope are: x<2x < 2

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;