Photo AI

Bepaal $f^{ ext{'} } (x)$ vanuit eerste beginsels indien dit gegee word dat $f(x)=-x^{2}$ - NSC Mathematics - Question 8 - 2022 - Paper 1

Question icon

Question 8

Bepaal-$f^{-ext{'}-}-(x)$-vanuit-eerste-beginsels-indien-dit-gegee-word-dat-$f(x)=-x^{2}$-NSC Mathematics-Question 8-2022-Paper 1.png

Bepaal $f^{ ext{'} } (x)$ vanuit eerste beginsels indien dit gegee word dat $f(x)=-x^{2}$. Bepaal: 8.2 $f^{ ext{'} } (x)$, indien dit gegee word dat $f(x)=4x^{3}... show full transcript

Worked Solution & Example Answer:Bepaal $f^{ ext{'} } (x)$ vanuit eerste beginsels indien dit gegee word dat $f(x)=-x^{2}$ - NSC Mathematics - Question 8 - 2022 - Paper 1

Step 1

Bepaal $f^{ ext{'} } (x)$ vanuit eerste beginsels indien dit gegee word dat $f(x)=-x^{2}$.

96%

114 rated

Answer

To find the derivative fext(x)f^{ ext{'} }(x) from first principles, we use the definition of the derivative:

f^{ ext{'} }(x) = rac{f(x+h) - f(x)}{h} Substituting the given function:

f(x)=x2f(x) = -x^{2} Then,

f(x+h)=(x+h)2=x22xhh2f(x+h) = -(x+h)^{2} = -x^{2} - 2xh - h^{2}

Now substituting into the derivative formula:

f^{ ext{'} }(x) = rac{-x^{2} - 2xh - h^{2} + x^{2}}{h} = rac{-2xh - h^{2}}{h} = -2x - h

Taking the limit as hh approaches 0:

fext(x)=2xf^{ ext{'} }(x) = -2x

Step 2

Bepaal: 8.2 $f^{ ext{'} } (x)$, indien dit gegee word dat $f(x)=4x^{3}-5x^{2}$.

99%

104 rated

Answer

To find the derivative of the function f(x)=4x35x2f(x) = 4x^{3} - 5x^{2}, we apply the power rule:

fext(x)=12x210xf^{ ext{'} }(x) = 12x^{2} - 10x

Step 3

8.2.2 $D_{x} \begin{bmatrix} -\frac{6\sqrt{x}+2}{x} \end{bmatrix}$

96%

101 rated

Answer

To find the derivative of the function inside the brackets, we use the quotient rule:

Dx(6x+2x)=(612x1/2)x(6x+2)(1)x2D_{x} \left( -\frac{6 \sqrt{x} + 2}{x} \right) = -\frac{(6 \cdot \frac{1}{2} x^{-1/2}) \cdot x - (6 \sqrt{x}+2)(1)}{x^{2}}

After simplification, we find:

=3x1/2x(6x+2)x2= -\frac{3x^{1/2} \cdot x - (6 \sqrt{x} + 2)}{x^{2}}

Further simplifying gives:

=3x3/26x2x2= -\frac{3x^{3/2} - 6\sqrt{x} - 2}{x^{2}}

Combining terms leads us to the final result.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;