Photo AI

Bepaal $f'(x)$ vanuit eerste beginsels indien dit gegeven wordt dat $f(x) = 3x^2$ - NSC Mathematics - Question 8 - 2021 - Paper 1

Question icon

Question 8

Bepaal-$f'(x)$-vanuit-eerste-beginsels-indien-dit-gegeven-wordt-dat-$f(x)-=-3x^2$-NSC Mathematics-Question 8-2021-Paper 1.png

Bepaal $f'(x)$ vanuit eerste beginsels indien dit gegeven wordt dat $f(x) = 3x^2$. 8.2 Bepaal: 8.2.1 $f'(x)$ indien $f(x) = x^2 - 3 + \frac{9}{x^2}$. 8.2.2 $g'(x)... show full transcript

Worked Solution & Example Answer:Bepaal $f'(x)$ vanuit eerste beginsels indien dit gegeven wordt dat $f(x) = 3x^2$ - NSC Mathematics - Question 8 - 2021 - Paper 1

Step 1

Bepaal $f'(x)$ vanuit eerste beginsels indien dit gegeven wordt dat $f(x) = 3x^2$

96%

114 rated

Answer

To find the derivative using the first principles, we use the definition of the derivative:

f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}

  1. Substitute for f(x)f(x): f(x)=limh03(x+h)23x2hf'(x) = \lim_{h \to 0} \frac{3(x+h)^2 - 3x^2}{h}

  2. Expand (x+h)2(x+h)^2: =limh03(x2+2xh+h2)3x2h= \lim_{h \to 0} \frac{3(x^2 + 2xh + h^2) - 3x^2}{h} =limh03x2+6xh+3h23x2h= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 3x^2}{h}

  3. Simplify: =limh06xh+3h2h= \lim_{h \to 0} \frac{6xh + 3h^2}{h} =limh0(6x+3h)= \lim_{h \to 0} (6x + 3h)

  4. Evaluate the limit as hh approaches 0: f(x)=6x.f'(x) = 6x.

Step 2

Bepaal $f'(x)$ indien $f(x) = x^2 - 3 + \frac{9}{x^2}$

99%

104 rated

Answer

Using standard rules of differentiation:

  1. Differentiate each term:
    • The derivative of x2x^2 is 2x2x.
    • The derivative of 3-3 is 00.
    • For rac{9}{x^2}, rewrite as 9x29x^{-2}, then differentiate to get 18x3-18x^{-3}.

Putting it all together:

f(x)=2x18x3.f'(x) = 2x - 18x^{-3}.

Step 3

Bepaal $g'(x)$ indien $g(x) = (\sqrt{x+3})(\sqrt{x-1})$

96%

101 rated

Answer

To find the derivative of g(x)g(x), we will apply the product rule:

  1. Define the functions: u=x+3u = \sqrt{x+3} and v=x1v = \sqrt{x-1}.

  2. Use the product rule: g(x)=uv+uv.g'(x) = u'v + uv'.

  3. Differentiating uu and vv:

    • u=12x+3u' = \frac{1}{2\sqrt{x+3}} and v=12x1v' = \frac{1}{2\sqrt{x-1}}.
  4. Substitute: g(x)=12x+3x1+x+312x1.g'(x) = \frac{1}{2\sqrt{x+3}}\sqrt{x-1} + \sqrt{x+3}\frac{1}{2\sqrt{x-1}}.

The answer can be further simplified if needed.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;