Photo AI

Gegee: $f(x) = 3x^3$ 9.1 Los op $f(x) = f' (x)$ 9.2 Die grafieke $f$, $f'$ en $f''$ gaan almal deur die punt $(0; 0)$ - NSC Mathematics - Question 9 - 2019 - Paper 1

Question icon

Question 9

Gegee:--$f(x)-=-3x^3$--9.1-Los-op-$f(x)-=-f'-(x)$--9.2-Die-grafieke-$f$,-$f'$-en-$f''$-gaan-almal-deur-die-punt-$(0;-0)$-NSC Mathematics-Question 9-2019-Paper 1.png

Gegee: $f(x) = 3x^3$ 9.1 Los op $f(x) = f' (x)$ 9.2 Die grafieke $f$, $f'$ en $f''$ gaan almal deur die punt $(0; 0)$. 9.2.1 Vir watter van die grafieke sal $(0;... show full transcript

Worked Solution & Example Answer:Gegee: $f(x) = 3x^3$ 9.1 Los op $f(x) = f' (x)$ 9.2 Die grafieke $f$, $f'$ en $f''$ gaan almal deur die punt $(0; 0)$ - NSC Mathematics - Question 9 - 2019 - Paper 1

Step 1

9.1 Los op $f(x) = f' (x)$

96%

114 rated

Answer

To solve for f(x)=f(x)f(x) = f'(x), we first find the derivative:

f(x)=9x2f'(x) = 9x^2

Setting the equations equal gives:

3x3=9x23x^3 = 9x^2

Rearranging leads to:

3x39x2=03x^3 - 9x^2 = 0

Factoring out 3x23x^2 results in:

3x2(x3)=03x^2(x - 3) = 0

Thus, the solutions are: x=0 extor x=3x = 0\ ext{ or } \ x = 3

Step 2

9.2.1 Vir watter van die grafieke sal $(0; 0)$ 'n stasionêre punt wees?

99%

104 rated

Answer

For the graphs of ff and ff', the point (0;0)(0; 0) is a stationary point for ff', as f(0)=0f'(0) = 0. This means the function ff has a turning point or potential inflection point at this coordinate.

Step 3

9.2.2 Verduidelik die verskil, indien enige, in die stasionêre punte waarna daar in VRAAG 9.2.1 verwys word.

96%

101 rated

Answer

The point (0;0)(0; 0) is identified as an inflection point of ff and a turning point of ff'. This indicates that while ff may change concavity there, ff' is at a local maximum or minimum, marking different types of stationary behavior.

Step 4

9.3 Bepaal die vertikale afstand tussen die grafieke van $f'$ en $f''$ by $x = 1$.

98%

120 rated

Answer

To find the vertical distance between ff' and ff'' at x=1x = 1, we first calculate:

f(1)=9(1)2=9f'(1) = 9(1)^2 = 9

And then,

f(x)=18f''(x) = 18

Hence, at x=1x = 1, the distance is:

f(1)f(1)=918=9|f'(1) - f''(1)| = |9 - 18| = 9

Step 5

9.4 Vir watter waarde(s) van $x$ is $f(x) - f' (x) < 0?$/

97%

117 rated

Answer

To solve f(x)f(x)<0f(x) - f'(x) < 0, we rewrite:

3x39x2<03x^3 - 9x^2 < 0

Factoring out 3x23x^2, we have:

3x2(x3)<03x^2(x - 3) < 0

The critical points are x=0x = 0 and x=3x = 3. Testing intervals reveals:

  • For x<0x < 0: 3x2>03x^2 > 0, x3<0x - 3 < 0; product is < 0.
  • For 0<x<30 < x < 3: 3x2>03x^2 > 0, x3<0x - 3 < 0; product is < 0.
  • For x>3x > 3: 3x2>03x^2 > 0, x3>0x - 3 > 0; product is > 0.

Thus, the solution is:

x<0 or 0<x<3x < 0 \text{ or } 0 < x < 3

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;