'n Toe rehogike houder (boks) moet soos volg vervaardig word:
Afmetings: lengte (l), breedte (w) en hoogte (h) - NSC Mathematics - Question 9 - 2020 - Paper 1
Question 9
'n Toe rehogike houder (boks) moet soos volg vervaardig word:
Afmetings: lengte (l), breedte (w) en hoogte (h).
Die lengte (l) van die basis moet 3 keer die breedte... show full transcript
Worked Solution & Example Answer:'n Toe rehogike houder (boks) moet soos volg vervaardig word:
Afmetings: lengte (l), breedte (w) en hoogte (h) - NSC Mathematics - Question 9 - 2020 - Paper 1
Step 1
9.1 Toon dat die koste om die houer te vervaardig soos volg bereken kan word:
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve for the cost of manufacturing the box, we first need to determine the relationship between the dimensions given:
We know that the length (l) is three times the width (w): l=3w
The volume (V) of the box is given by the formula: V=l×w×h
Given that the volume must be 5 m³: 5=(3w)×w×h
Therefore, h=3w25
The surface area (SA) of the box, which includes top, bottom, and sides, can be calculated as follows: SA=2lw+2lh+2wh
Substituting for l and h, we have: SA=2(3w)w+2(3w)(3w25)+2w(3w25)
By simplifying, we arrive at the cost function: C=90w2+48h=90w2+48(3w25)
This leads to the formulation C=90w2+80w−1.
Step 2
9.2 Bepaal die breedte van die houer sodat die koste om die houer te vervaardig, in minimum sal wees.
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find the minimum cost, we need to differentiate the cost function with respect to w. From the previous part, we have:
The cost function: C(w)=90w2+48(3w25)
To find the derivative of C with respect to w, we apply the power rule: C′(w)=90⋅2w−48⋅(3w35⋅2)
This simplifies to: C′(w)=180w−3w3480
Setting the derivative equal to zero allows us to find critical points: 180w−160w−3=0
Rearranging gives: 180w4=160
Thus: w4=1816=98
Therefore, w=498=332≈0.76 m
Hence, the width w that minimizes the cost is approximately 0.76 m.