Photo AI

In die diagram is A(2; 10), B(k; k) en C(4; -2) die hoekpunte van ∆ABC - NSC Mathematics - Question 3 - 2021 - Paper 2

Question icon

Question 3

In-die-diagram-is-A(2;-10),-B(k;-k)-en-C(4;--2)-die-hoekpunte-van-∆ABC-NSC Mathematics-Question 3-2021-Paper 2.png

In die diagram is A(2; 10), B(k; k) en C(4; -2) die hoekpunte van ∆ABC. Lyn BC word verleng na H en sny die x-as by E(12; 0). AB en AC sny die x-as by F en G ondersk... show full transcript

Worked Solution & Example Answer:In die diagram is A(2; 10), B(k; k) en C(4; -2) die hoekpunte van ∆ABC - NSC Mathematics - Question 3 - 2021 - Paper 2

Step 1

3.1.1 BE

96%

114 rated

Answer

To calculate the gradient of line segment BE, we use the formula:

mBE=y2y1x2x1m_{BE} = \frac{y_2 - y_1}{x_2 - x_1}
where B(k; k) and E(12; 0).

Substituting in the coordinates:

mBE=0k12k=k12km_{BE} = \frac{0 - k}{12 - k} = \frac{-k}{12 - k}

Step 2

3.1.2 AB

99%

104 rated

Answer

To find the gradient of line segment AB, we use:

mAB=tan(81,87°)m_{AB} = \tan(81,87°)
which evaluates to approximately:

mAB7m_{AB} \approx 7

Step 3

3.2 Bepaal die vergelyking van BE in die vorm y = mx + c

96%

101 rated

Answer

Using the gradient calculated above:

yy1=m(xx1)y - y_1 = m(x - x_1) Substituting E(12; 0) into the equation:

y0=k12k(x12)y - 0 = \frac{-k}{12-k}(x - 12)
Let’s express y:

y=k12kx+12k12ky = \frac{-k}{12-k}x + \frac{12k}{12-k}

Step 4

3.3.1 Koördinate van B, waar k < 0

98%

120 rated

Answer

Based on our previous calculations of the gradients:

Setting the gradient equal values from BE and AB:

k12k=7\frac{-k}{12-k} = 7
Solving for k, we find:

k=4k = -4
Thus the coordinates of B are B(-4; -4).

Step 5

3.3.2 Grootte van ∠A

97%

117 rated

Answer

Using the tangent ratio:

tan(A)=10(2)24=tan(116,57°)\tan(\angle A) = \frac{10 - (-2)}{2 - 4} = \tan(116,57°)
Calculating gives us:

Angle A = 34,70°.

Step 6

3.3.3 Koördinate van die snypunt van die hoeke lyn en parallelogram ACES

97%

121 rated

Answer

For the intersection point of diagonals in parallelogram ACES, we apply the midpoint formula:

M(x1+x22,y1+y22)M(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})
With points A and C, we find:

M(12+(2)2,10+02)=(5;5)M(\frac{12 + (-2)}{2}, \frac{10 + 0}{2}) = (5; 5).

Step 7

3.4.1 Bereken die koördinate van T.

96%

114 rated

Answer

Given that ET = BE = 4√17 and substituting back into the equations yields:

We can solve for p:

p=16p = 16
Thus the coordinates of T = (16; 16).

Step 8

3.4.2 Bepaal die vergelyking van

99%

104 rated

Answer

For the circle that passes through point B(k; k):

The equation is:

(xa)2+(yb)2=r2(x - a)^2 + (y - b)^2 = r^2
Substituting B(-4; -4) and the radius from earlier calculations, we find:

(x+4)2+(y+4)2=(r)2(x + 4)^2 + (y + 4)^2 = (r)^2.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;