Photo AI

10.1 Die gebeurtenisse S en T is onafhanklik - NSC Mathematics - Question 10 - 2017 - Paper 1

Question icon

Question 10

10.1-Die-gebeurtenisse-S-en-T-is-onafhanklik-NSC Mathematics-Question 10-2017-Paper 1.png

10.1 Die gebeurtenisse S en T is onafhanklik. - P(S en T) = \frac{1}{6} - P(S) = \frac{1}{4} 10.1.1 Bereken P(T). 10.1.2 Vervolgens, bereken P(S or T). 10.2 'n VY... show full transcript

Worked Solution & Example Answer:10.1 Die gebeurtenisse S en T is onafhanklik - NSC Mathematics - Question 10 - 2017 - Paper 1

Step 1

Bereken P(T)

96%

114 rated

Answer

Given that the events S and T are independent, we can use the formula for independent events:
P(S and T)=P(S)×P(T)P(S \text{ and } T) = P(S) \times P(T)
We know that: P(S and T)=16P(S \text{ and } T) = \frac{1}{6}
P(S)=14P(S) = \frac{1}{4}
Substituting the known values into the formula: 16=14×P(T)\frac{1}{6} = \frac{1}{4} \times P(T)
To find P(T), we rearrange the equation:
P(T)=16÷14=16×41=46=23P(T) = \frac{1}{6} \div \frac{1}{4} = \frac{1}{6} \times \frac{4}{1} = \frac{4}{6} = \frac{2}{3}
Thus,
P(T)=23P(T) = \frac{2}{3}

Step 2

Vervolgens, bereken P(S or T)

99%

104 rated

Answer

Using the formula for the probability of the union of two independent events:
P(S or T)=P(S)+P(T)P(S and T)P(S \text{ or } T) = P(S) + P(T) - P(S \text{ and } T)
Substituting the known values: P(S)=14, P(T)=23, P(S and T)=16P(S) = \frac{1}{4}, \ P(T) = \frac{2}{3}, \ P(S \text{ and } T) = \frac{1}{6}
Thus: P(S or T)=14+2316P(S \text{ or } T) = \frac{1}{4} + \frac{2}{3} - \frac{1}{6}
Finding a common denominator (which is 12):
=312+812212=912=34= \frac{3}{12} + \frac{8}{12} - \frac{2}{12} = \frac{9}{12} = \frac{3}{4}
Therefore,
P(S or T)=34P(S \text{ or } T) = \frac{3}{4}

Step 3

Herhaling van syfers NIE in die kode toegelaat word NIE

96%

101 rated

Answer

To determine the number of different codes using the digits 2, 3, 5, 7, and 9 without repetition, we can use the permutation formula:

n(E)=n!n(E) = n!
Where n is the number of available digits. Here, n = 5 (because we have five digits).
Thus, the number of codes is: n(E)=5!=120n(E) = 5! = 120

Step 4

Herhaling van syfers WEL in die kode toegelaat word

98%

120 rated

Answer

If repetition is allowed, each of the five positions can be filled by any of the 5 digits.
Thus, the total number of different codes is:

n(E)=55=3125n(E) = 5^5 = 3125

Step 5

Bepaal die waarskynlikheid dat die 2 Australiërs se kamers direk langs mekaar sal wees

97%

117 rated

Answer

To compute the probability of the 2 Australian rooms being next to each other, consider the two Australians as a single unit or block.
Now, we have:

  • 6 units in total (3 South Africans + 1 block of 2 Australians + 2 English)

The arrangements of these 6 units and the arrangement within the block: n(E)=6!×2!n(E) = 6! \times 2!
Total arrangements of all rooms without constraints: n(S)=7!n(S) = 7!
Probability: P(E)=n(E)n(S)=6!×2!7!=221P(E) = \frac{n(E)}{n(S)} = \frac{6! \times 2!}{7!} = \frac{2}{21}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;