Photo AI

In ΔABC: D is 'n punt op AB, E is 'n punt op AC en F is 'n punt op BC zodat dat DECF 'n parallelogram is - NSC Mathematics - Question 10 - 2018 - Paper 1

Question icon

Question 10

In-ΔABC:--D-is-'n-punt-op-AB,-E-is-'n-punt-op-AC-en-F-is-'n-punt-op-BC-zodat-dat-DECF-'n-parallelogram-is-NSC Mathematics-Question 10-2018-Paper 1.png

In ΔABC: D is 'n punt op AB, E is 'n punt op AC en F is 'n punt op BC zodat dat DECF 'n parallelogram is. BF : FC = 2 : 3. Die loodregte hoogte AG word getrek om ... show full transcript

Worked Solution & Example Answer:In ΔABC: D is 'n punt op AB, E is 'n punt op AC en F is 'n punt op BC zodat dat DECF 'n parallelogram is - NSC Mathematics - Question 10 - 2018 - Paper 1

Step 1

Skryf neer AH : HG.

96%

114 rated

Answer

To find the ratio AH : HG in triangle ABC, we can use similar triangles or properties of parallel lines. Since D and E are points on the sides of triangle ABC, the height from A intersects DE at H. Thus:

Given that AG = 1 unit and BC = (5 - t) units, we can express the ratios as follows:

theoretical ratio = AH : HG

Using the section formula in the ratio of BF : FC = 2 : 3, we denote:

AH = rac{3}{2} HG.

Step 2

Bereken indien die oppervlakte van die parallelogram 'n maksimum is.

99%

104 rated

Answer

To calculate the area of the parallelogram DECF given that the height AG = 1 unit and the base BC = (5 - t) units:

The area AA of a parallelogram is given by the formula:

A=extbaseimesextheightA = ext{base} imes ext{height}.

Substituting the values:

A(t)=(5t)imes1=5tA(t) = (5 - t) imes 1 = 5 - t.

To find the maximum area, we differentiate A(t)A(t) with respect to tt and set it to zero:

A(t)=1A'(t) = -1.

Thus, AA is maximized when tt is minimized. Since tt cannot exceed 5, we evaluate:

Aextmax=5A_{ ext{max}} = 5.

Putting this into context from the marking scheme, we also observe the specific values related to areas:

A(t) = rac{6}{25}(5-t) + rac{6}{5}.

From the calculations, we can derive:

For t=0t = 0:

A(0)=(5)=5A(0) = (5) = 5

For t=5t = 5:

A(5) = rac{30}{12} = 2.5.

Hence, the area can vary based on the values of t, and thus indicate potential maxima or minima depending on constraints provided.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;