SimpleStudy Schools Book a Demo We can give expert advice on our plans and what will be the best option for your school.
Parents Pricing Home NSC Mathematics Exponents and Surds 'n Konvergente meetkundige reeks wat slegs uit positiewe terme bestaan, het eerste term a,
konstante verhouding r en n ext{de} term, T_n, soadat
$$ extstyleegin{aligned} extstyle extstyle extstyle extstyle extstyle S_n = rac{1}{4} extstyle extstyle extstyle extstyle extstyle extstyle extstyle S_n extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstylerac{1}{4} extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle
ight) = rac{1}{4} extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle $$
3.1 Indien $T_1 + T_2 = 2$, skryf 'n uitdrukking vir $a$ in terme van $r$ neer
'n Konvergente meetkundige reeks wat slegs uit positiewe terme bestaan, het eerste term a,
konstante verhouding r en n ext{de} term, T_n, soadat
$$ extstyleegin{aligned} extstyle extstyle extstyle extstyle extstyle S_n = rac{1}{4} extstyle extstyle extstyle extstyle extstyle extstyle extstyle S_n extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstylerac{1}{4} extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle
ight) = rac{1}{4} extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle $$
3.1 Indien $T_1 + T_2 = 2$, skryf 'n uitdrukking vir $a$ in terme van $r$ neer - NSC Mathematics - Question 3 - 2017 - Paper 1 Question 3
View full question 'n Konvergente meetkundige reeks wat slegs uit positiewe terme bestaan, het eerste term a,
konstante verhouding r en n ext{de} term, T_n, soadat
$$ extstyl... show full transcript
View marking scheme Worked Solution & Example Answer:'n Konvergente meetkundige reeks wat slegs uit positiewe terme bestaan, het eerste term a,
konstante verhouding r en n ext{de} term, T_n, soadat
$$ extstyleegin{aligned} extstyle extstyle extstyle extstyle extstyle S_n = rac{1}{4} extstyle extstyle extstyle extstyle extstyle extstyle extstyle S_n extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstylerac{1}{4} extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle
ight) = rac{1}{4} extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle $$
3.1 Indien $T_1 + T_2 = 2$, skryf 'n uitdrukking vir $a$ in terme van $r$ neer - NSC Mathematics - Question 3 - 2017 - Paper 1
Indien $T_1 + T_2 = 2$, skryf 'n uitdrukking vir $a$ in terme van $r$ neer. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
In a geometric series, the first term is denoted as ( a ) and the common ratio as ( r ). The first two terms are given by:
( T_1 = a ) and ( T_2 = ar ).
Given that ( T_1 + T_2 = 2 ), we can substitute:
[ a + ar = 2 ]
Factoring out ( a ):
[ a(1 + r) = 2 ]
Thus,
[ a = \frac{2}{1 + r} ]
Bereken die waardes van $a$ en $r$. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Using the formula for the sum of the first n terms of a geometric series:
[ S_n = T_1 + T_2 + \sum_{n=3}^{n} T_n ]
We have:
[ S_n = a + ar + \frac{ar^2}{1 - r} ]
Given ( S_n = \frac{1}{4} ), substituting ( a = \frac{2}{1 + r} ):
[ \frac{2}{1 + r} + \frac{2r}{1 + r} + \frac{\frac{2r^2}{1 + r}}{1 - r} = \frac{1}{4} ]
Simplifying gives:
[ 2 + 2r + \frac{2r^2}{(1 - r)(1 + r)} = \frac{1}{4} ]
This leads to a quadratic equation in terms of ( r ):
Substituting values gives possible values of ( r = \frac{1}{3} ) and consequently ( a = \frac{3}{2} ).
Join the NSC students using SimpleStudy...97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;© 2025 SimpleStudy. All rights reserved