Photo AI

Los op vir $x$: 1.1.1 $3x^2 + 10x + 6 = 0$ (korrek tot TWEE desimale plekke) 1.1.2 $ ext{ } ext{ } ext{ } ot{\sqrt{6x^2 - 15 = x + 1}}$ 1.1.3 $x^2 + 2x - 24 ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } 0$ Los gelyktydig op vir $x$ en $y$: $5x + y = 3 $ en $3x^2 - 2xy = y^2 - 105$ 1.2.1 Los op vir $p$ as $p^2 - 48p - 49 = 0$ 1.2.2 Vervolgens, of andersins, los op vir $x$ as $7x^2 - 48(7) - 49 = 0$ - NSC Mathematics - Question 1 - 2017 - Paper 1

Question icon

Question 1

Los-op-vir-$x$:--1.1.1--$3x^2-+-10x-+-6-=-0$-(korrek-tot-TWEE-desimale-plekke)--1.1.2--$-ext{-}--ext{-}--ext{-}-ot{\sqrt{6x^2---15-=-x-+-1}}$--1.1.3--$x^2-+-2x---24--ext{-}--ext{-}--ext{-}--ext{-}---ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}---ext{-}-ext{-}--ext{-}--ext{-}--ext{-}--ext{-}---ext{-}-0$----Los-gelyktydig-op-vir-$x$-en-$y$:--$5x-+-y-=-3-$--en-$3x^2---2xy-=-y^2---105$--1.2.1--Los-op-vir-$p$-as-$p^2---48p---49-=-0$--1.2.2--Vervolgens,-of-andersins,-los-op-vir-$x$-as-$7x^2---48(7)---49-=-0$-NSC Mathematics-Question 1-2017-Paper 1.png

Los op vir $x$: 1.1.1 $3x^2 + 10x + 6 = 0$ (korrek tot TWEE desimale plekke) 1.1.2 $ ext{ } ext{ } ext{ } ot{\sqrt{6x^2 - 15 = x + 1}}$ 1.1.3 $x^2 + 2x - 24 ... show full transcript

Worked Solution & Example Answer:Los op vir $x$: 1.1.1 $3x^2 + 10x + 6 = 0$ (korrek tot TWEE desimale plekke) 1.1.2 $ ext{ } ext{ } ext{ } ot{\sqrt{6x^2 - 15 = x + 1}}$ 1.1.3 $x^2 + 2x - 24 ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } 0$ Los gelyktydig op vir $x$ en $y$: $5x + y = 3 $ en $3x^2 - 2xy = y^2 - 105$ 1.2.1 Los op vir $p$ as $p^2 - 48p - 49 = 0$ 1.2.2 Vervolgens, of andersins, los op vir $x$ as $7x^2 - 48(7) - 49 = 0$ - NSC Mathematics - Question 1 - 2017 - Paper 1

Step 1

1.1.1 Los op vir $x$: $3x^2 + 10x + 6 = 0$

96%

114 rated

Answer

To solve for xx, we can use the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

In this case, a=3a = 3, b=10b = 10, and c=6c = 6. Substituting in the values, we have:

x=10±10243623x = \frac{-10 \pm \sqrt{10^2 - 4 \cdot 3 \cdot 6}}{2 \cdot 3}

Calculating the discriminant:

b24ac=10072=28b^2 - 4ac = 100 - 72 = 28

Thus,

x=10±286x = \frac{-10 \pm \sqrt{28}}{6}

Simplifying:

x=10±276=5±73x = \frac{-10 \pm 2 \sqrt{7}}{6} = \frac{-5 \pm \sqrt{7}}{3}

Calculating the approximate values gives:

x12.55,x20.78x_1 \approx -2.55, \quad x_2 \approx 0.78

Step 2

1.1.2 $ ot{\sqrt{6x^2 - 15 = x + 1}}$

99%

104 rated

Answer

To solve the equation, we start by isolating the square root

6x215=x+1\sqrt{6x^2 - 15} = x + 1

Now we square both sides:

6x215=(x+1)26x^2 - 15 = (x + 1)^2

This expands to:

6x215=x2+2x+16x^2 - 15 = x^2 + 2x + 1

Then, rearranging gives:

5x22x16=05x^2 - 2x - 16 = 0

Using the quadratic formula again:

x=2±(2)245(16)25x = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 5 \cdot (-16)}}{2 \cdot 5}

Calculating the discriminant:

4+320=3244 + 320 = 324

Thus,

x=2±1810x = \frac{2 \pm 18}{10}

This yields the solutions:

x1=2,x2=1.6x_1 = 2, \quad x_2 = -1.6

Step 3

1.1.3 Los op vir $x$ as $x^2 + 2x - 24 \geq 0$

96%

101 rated

Answer

To solve this inequality, we start by factoring:

(x+6)(x4)0(x + 6)(x - 4) \geq 0

The critical points are x=6x = -6 and x=4x = 4. To determine the intervals, we test values:

  • For x<6x < -6, say x=7x = -7, we find ()()=+(-)(-) = +
  • For 6<x<4-6 < x < 4, say x=0x = 0, we find (+)()=(+)(-) = -
  • For x>4x > 4, say x=5x = 5, we find (+)(+)=+(+)(+) = +

Thus, the solution to the inequality is:

x6orx4x \leq -6 \quad \text{or} \quad x \geq 4

Step 4

1.2.1 Los op vir $p$ as $p^2 - 48p - 49 = 0$

98%

120 rated

Answer

Using the quadratic formula:

p=48±(48)241(49)21p = \frac{48 \pm \sqrt{(-48)^2 - 4 \cdot 1 \cdot (-49)}}{2 \cdot 1}

Calculating the discriminant:

2304+196=25002304 + 196 = 2500

Thus,

p=48±502p = \frac{48 \pm 50}{2}

Calculating gives:

p1=49,p2=1p_1 = 49, \quad p_2 = -1

Step 5

1.2.2 Los op vir $x$ as $7x^2 - 48(7) - 49 = 0$

97%

117 rated

Answer

Simplifying the equation:

7x233649=07x^2 - 336 - 49 = 0

So we have:

7x2385=07x^2 - 385 = 0

Dividing by 7:

x2=3857x^2 = \frac{385}{7}

Taking the square root:

x=±3857x = \pm\sqrt{\frac{385}{7}}

Calculating gives approximate values for xx.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;