Photo AI

Solve for $x$: 1.1.1 $(x-3)(x+1)=0$ 1.1.2 $\, \, \, \, \, \sqrt{x} = 512$ 1.1.3 $x(x-4) < 0$ Given: $f(x)=x^2-5x+2$ 1.2.1 Solve for $x$ if $f(x) = 0$ 1.2.2 For which values of $c$ will $f(x) = c$ have no real roots? 1.3 Solve for $x$ and $y$: $x = 2y + 2$ $x^2 - 2xy + 3y^2 = 4$ 1.4 Calculate the maximum value of $S$ if $S = \frac{6}{x^2 + 2}$ - NSC Mathematics - Question 1 - 2017 - Paper 1

Question icon

Question 1

Solve-for-$x$:--1.1.1-$(x-3)(x+1)=0$--1.1.2-$\,-\,-\,-\,-\,-\sqrt{x}-=-512$--1.1.3-$x(x-4)-<-0$--Given:-$f(x)=x^2-5x+2$--1.2.1-Solve-for-$x$-if-$f(x)-=-0$--1.2.2-For-which-values-of-$c$-will-$f(x)-=-c$-have-no-real-roots?--1.3-Solve-for-$x$-and-$y$:--$x-=-2y-+-2$--$x^2---2xy-+-3y^2-=-4$--1.4-Calculate-the-maximum-value-of-$S$-if-$S-=-\frac{6}{x^2-+-2}$-NSC Mathematics-Question 1-2017-Paper 1.png

Solve for $x$: 1.1.1 $(x-3)(x+1)=0$ 1.1.2 $\, \, \, \, \, \sqrt{x} = 512$ 1.1.3 $x(x-4) < 0$ Given: $f(x)=x^2-5x+2$ 1.2.1 Solve for $x$ if $f(x) = 0$ 1.2.2 For... show full transcript

Worked Solution & Example Answer:Solve for $x$: 1.1.1 $(x-3)(x+1)=0$ 1.1.2 $\, \, \, \, \, \sqrt{x} = 512$ 1.1.3 $x(x-4) < 0$ Given: $f(x)=x^2-5x+2$ 1.2.1 Solve for $x$ if $f(x) = 0$ 1.2.2 For which values of $c$ will $f(x) = c$ have no real roots? 1.3 Solve for $x$ and $y$: $x = 2y + 2$ $x^2 - 2xy + 3y^2 = 4$ 1.4 Calculate the maximum value of $S$ if $S = \frac{6}{x^2 + 2}$ - NSC Mathematics - Question 1 - 2017 - Paper 1

Step 1

1.1.1 $(x-3)(x+1)=0$

96%

114 rated

Answer

To solve the equation (x3)(x+1)=0(x-3)(x+1)=0, we set each factor to zero:

  1. x3=0x-3=0 leads to x=3x=3.
  2. x+1=0x+1=0 leads to x=1x=-1.

Thus, the solutions are: x=3extorx=1x = 3 \, ext{or} \, x = -1

Step 2

1.1.2 $\sqrt{x} = 512$

99%

104 rated

Answer

To solve for xx, we square both sides:

x=512\sqrt{x} = 512

Squaring both sides gives: x=(512)2=262144x = (512)^2 = 262144

Therefore, the solution is: x=262144x = 262144

Step 3

1.1.3 $x(x-4) < 0$

96%

101 rated

Answer

To solve the inequality x(x4)<0x(x-4) < 0, we first find the critical points by setting each factor to zero:

  1. x=0x = 0
  2. x4=0x=4x - 4 = 0 \Rightarrow x = 4

Next, we test intervals created by these points:

  • For x<0x < 0, say x=1x = -1: (1)(14)=5(-1)(-1 - 4) = 5 (not a solution)
  • For 0<x<40 < x < 4, say x=2x = 2: (2)(24)=4(2)(2 - 4) = -4 (solution)
  • For x>4x > 4, say x=5x = 5: (5)(54)=5(5)(5 - 4) = 5 (not a solution)

Thus, the solution set is: 0<x<40 < x < 4

Step 4

1.2.1 Solve for $x$ if $f(x)=0$

98%

120 rated

Answer

To solve the quadratic equation x25x+2=0x^2 - 5x + 2 = 0, we apply the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

where a=1a = 1, b=5b = -5, and c=2c = 2.

Calculating the discriminant:

b24ac=(5)24(1)(2)=258=17b^2 - 4ac = (-5)^2 - 4(1)(2) = 25 - 8 = 17

Now using the quadratic formula:

x=5±172x = \frac{5 \pm \sqrt{17}}{2}

So, the solutions are: x=5+172andx=5172x = \frac{5 + \sqrt{17}}{2} \, \text{and} \, x = \frac{5 - \sqrt{17}}{2}

Step 5

1.2.2 For which values of $c$ will $f(x) = c$ have no real roots?

97%

117 rated

Answer

To identify the values of cc for which f(x)=cf(x) = c has no real roots, we need the condition for the discriminant to be negative:

b24ac<0b^2 - 4ac < 0

Substituting for a=1a = 1, b=5b = -5, and c=c2c = c - 2 leads us to:

(5)24(1)(2c)<0(-5)^2 - 4(1)(2 - c) < 0

Calculating the left side:

258+4c<04c<17c<17425 - 8 + 4c < 0 \Rightarrow 4c < -17 \Rightarrow c < -\frac{17}{4}

So, the values of cc that yield no real roots are: c<174c < -\frac{17}{4}

Step 6

1.3 Solve for $x$ and $y$: $x = 2y + 2$

97%

121 rated

Answer

  1. Substitute xx into the second equation: x22xy+3y2=4x^2 - 2xy + 3y^2 = 4 Substituting x=2y+2x = 2y + 2: (2y+2)22(2y+2)y+3y2=4(2y + 2)^2 - 2(2y + 2)y + 3y^2 = 4

Simplifying: 4y2+8y+4(4y2+4y)+3y2=44y^2 + 8y + 4 - (4y^2 + 4y) + 3y^2 = 4 Combining like terms: 3y2+4y+44=03y2+4y=03y^2 + 4y + 4 - 4 = 0 \Rightarrow 3y^2 + 4y = 0

Factoring: y(3y+4)=0y(3y + 4) = 0

Thus, y=0y = 0 or y=43y = -\frac{4}{3}. For each yy value:

  • If y=0y = 0: x=2(0)+2=2x = 2(0) + 2 = 2
  • If y=43y = -\frac{4}{3}: x=2(43)+2=23x = 2(-\frac{4}{3}) + 2 = -\frac{2}{3}

Therefore, the pairs (x,y)(x, y) are: (2,0)and(23,43) (2, 0) \, \text{and} \, (-\frac{2}{3}, -\frac{4}{3})

Step 7

1.4 Calculate the maximum value of $S$ if $S = \frac{6}{x^2 + 2}$

96%

114 rated

Answer

To find the maximum value of SS, we first rewrite it in terms of xx:

A maximum occurs when x2+2x^2 + 2 is minimized. The minimum value of x2x^2 is 00, so:

x2+22x^2 + 2 \geq 2

Thus: S62=3S \leq \frac{6}{2} = 3

To achieve this, we substitute x=0x = 0 into SS:

S=602+2=3S = \frac{6}{0^2 + 2} = 3

Therefore, the maximum value of SS is: S=3S = 3

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;