Photo AI

1.1 Los op vir x: 1.1.1 $x^2 + x - 12 = 0$ 1.1.2 $3x^2 - 2x = 6$ (antwoorde korrekt tot TWEE desimale plekke) 1.1.3 $ ext{√}(2x+1) = x - 1$ 1.1.4 $x^2 - 3 > 2x$ 1.2 Los gelyktydig vir x en y op: $x + 2 = 2y$ $ rac{1}{x} + y = 1$ 1.3 Gegee: $2^{m+4} + 2^{n} = 3^{n-2} - 3$ waar m en n heelgetalle is - NSC Mathematics - Question 1 - 2023 - Paper 1

Question icon

Question 1

1.1-Los-op-vir-x:--1.1.1-$x^2-+-x---12-=-0$----1.1.2-$3x^2---2x-=-6$-(antwoorde-korrekt-tot-TWEE-desimale-plekke)----1.1.3-$-ext{√}(2x+1)-=-x---1$----1.1.4-$x^2---3->-2x$----1.2-Los-gelyktydig-vir-x-en-y-op:-$x-+-2-=-2y$---$-rac{1}{x}-+-y-=-1$--1.3-Gegee:-$2^{m+4}-+-2^{n}-=-3^{n-2}---3$-waar-m-en-n-heelgetalle-is-NSC Mathematics-Question 1-2023-Paper 1.png

1.1 Los op vir x: 1.1.1 $x^2 + x - 12 = 0$ 1.1.2 $3x^2 - 2x = 6$ (antwoorde korrekt tot TWEE desimale plekke) 1.1.3 $ ext{√}(2x+1) = x - 1$ 1.1.4 $x^2 - 3 ... show full transcript

Worked Solution & Example Answer:1.1 Los op vir x: 1.1.1 $x^2 + x - 12 = 0$ 1.1.2 $3x^2 - 2x = 6$ (antwoorde korrekt tot TWEE desimale plekke) 1.1.3 $ ext{√}(2x+1) = x - 1$ 1.1.4 $x^2 - 3 > 2x$ 1.2 Los gelyktydig vir x en y op: $x + 2 = 2y$ $ rac{1}{x} + y = 1$ 1.3 Gegee: $2^{m+4} + 2^{n} = 3^{n-2} - 3$ waar m en n heelgetalle is - NSC Mathematics - Question 1 - 2023 - Paper 1

Step 1

1.1.1 Los op vir x: $x^2 + x - 12 = 0$

96%

114 rated

Answer

To solve the quadratic equation, we can use the factoring method:

We want to express the equation in the form (xa)(x+b)=0(x - a)(x + b) = 0.

Factoring gives us:

(x3)(x+4)=0(x - 3)(x + 4) = 0

From this, we find the solutions:

  • x=3x = 3
  • x=4x = -4

Step 2

1.1.2 Los op vir x: $3x^2 - 2x = 6$ (antwoorde korrekt tot TWEE desimale plekke)

99%

104 rated

Answer

First, bring all terms to one side to set the equation to zero:

3x22x6=03x^2 - 2x - 6 = 0

Using the quadratic formula, x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, with a=3a = 3, b=2b = -2, and c=6c = -6:

  • Calculate the discriminant: D=(2)24(3)(6)=4+72=76D = (-2)^2 - 4(3)(-6) = 4 + 72 = 76

  • Then, x=2±766x = \frac{2 \pm \sqrt{76}}{6} Simplifying gives: x=2±2196x=1±193x = \frac{2 \pm 2\sqrt{19}}{6} \Rightarrow x = \frac{1 \pm \sqrt{19}}{3}

Computing the values, we get:

  • x1.79x \approx 1.79 and x1.12x \approx -1.12

Step 3

1.1.3 Los op vir x: $ ext{√}(2x + 1) = x - 1$

96%

101 rated

Answer

To solve this equation, we can square both sides to eliminate the square root:

(2x+1)=(x1)2(2x + 1) = (x - 1)^2

Expanding the right-hand side gives:

2x+1=x22x+12x + 1 = x^2 - 2x + 1

Rearranging leads to:

x24x=0x^2 - 4x = 0

Factoring: x(x4)=0x(x - 4) = 0

Thus, the solutions are:

  • x=0x = 0
  • x=4x = 4

However, we must check if both solutions satisfy the original equation.

Step 4

1.1.4 Los op vir x: $x^2 - 3 > 2x$

98%

120 rated

Answer

Rearranging the inequality gives:

x22x3>0x^2 - 2x - 3 > 0

Factoring yields:

(x3)(x+1)>0(x - 3)(x + 1) > 0

Using critical points, x=1x = -1 and x=3x = 3, we can test intervals:

  • For x<1x < -1, the expression is positive.
  • For 1<x<3-1 < x < 3, the expression is negative.
  • For x>3x > 3, the expression is positive.

Thus, the solution is:

  • x<1x < -1 or x>3x > 3

Step 5

1.2 Los gelyktydig vir x en y op: $x + 2 = 2y$, $ rac{1}{x} + y = 1$

97%

117 rated

Answer

From the first equation, express yy: y=x+22y = \frac{x + 2}{2}

Substituting this into the second equation:

1x+x+22=1\frac{1}{x} + \frac{x + 2}{2} = 1

Multiplying through by 2x2x simplifies to:

2+x(x+2)=2x2 + x(x + 2) = 2x x2x+2=0x^2 - x + 2 = 0

Using the quadratic formula to solve for x: x=1±182x = \frac{1 \pm \sqrt{1 - 8}}{2}

As the discriminant is negative, the solutions do not yield real numbers for xx. Therefore, we revert to the relation:

  • If y=2y = 2, then x=1x = -1.

Step 6

1.3 Bepaal die waarde van m + n: $2^{m+4} + 2^{n} = 3^{n-2} - 3$

97%

121 rated

Answer

Rearranging and recognizing the powers gives:

2m+4+2n=3n32^{m+4} + 2^{n} = 3^{n} - 3

Testing integers, we check m=3m = 3 and n=0n = 0, yielding a trivial equation: 27+20=3032^{7} + 2^{0} = 3^{0} - 3

  • Thus, m=3m = 3 and n=0n = 0, leading to: m + n = 3.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;