1.1 Los op vir x:
1.1.1 $x^2 + 5x - 6 = 0$
1.1.2 $4x^2 + 3x - 5 = 0$ (korrek tot TWEE desimale plekke)
1.1.3 $4x^2 - 1 < 0 $
1.1.4 $\left( \sqrt{32} + x \right) \left( \sqrt{32} - x \right) = x$
1.2 Los gelyktydig op vir $x$ en $y$:
$y + x = 12$
en
$xy = 14 - 3x$
1.3 Beskryf die produk $1 \times 2 \times 3 \times 4 \times 30.$
Bepaal die grootste waarde van $k$ sodat $3^k$ 'n faktor van die produk is. - NSC Mathematics - Question 1 - 2019 - Paper 1
Question 1
1.1 Los op vir x:
1.1.1 $x^2 + 5x - 6 = 0$
1.1.2 $4x^2 + 3x - 5 = 0$ (korrek tot TWEE desimale plekke)
1.1.3 $4x^2 - 1 < 0 $
1.1.4 $\left( \sqrt{32} + x \rig... show full transcript
Worked Solution & Example Answer:1.1 Los op vir x:
1.1.1 $x^2 + 5x - 6 = 0$
1.1.2 $4x^2 + 3x - 5 = 0$ (korrek tot TWEE desimale plekke)
1.1.3 $4x^2 - 1 < 0 $
1.1.4 $\left( \sqrt{32} + x \right) \left( \sqrt{32} - x \right) = x$
1.2 Los gelyktydig op vir $x$ en $y$:
$y + x = 12$
en
$xy = 14 - 3x$
1.3 Beskryf die produk $1 \times 2 \times 3 \times 4 \times 30.$
Bepaal die grootste waarde van $k$ sodat $3^k$ 'n faktor van die produk is. - NSC Mathematics - Question 1 - 2019 - Paper 1
Step 1
1.1.1 $x^2 + 5x - 6 = 0$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve the quadratic equation, we can factor it as:
(x+6)(x−1)=0
Setting each factor to zero gives:
x+6=0⇒x=−6
x−1=0⇒x=1
Step 2
1.1.2 $4x^2 + 3x - 5 = 0$ (korrek tot TWEE desimale plekke)
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Using the quadratic formula:
x=2a−b±b2−4ac
where a=4, b=3, and c=−5.
Substituting gives:
x=2(4)−3±32−4(4)(−5)
Calculating the discriminant:
=8−3±9+80=8−3±89
Thus, the two solutions are approximately:
x=−1.55
x=0.80
Step 3
1.1.3 $4x^2 - 1 < 0 $
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
We can rearrange this inequality as:
4x2<1
Dividing both sides by 4 results in:
x2<41
Taking the square root gives:
−21<x<21
Step 4
1.1.4 $\left( \sqrt{32} + x \right) \left( \sqrt{32} - x \right) = x$
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Expanding the left side gives:
32−x2=x
Rearranging leads to:
x2+x−32=0
Using the quadratic formula:
x=2−1±1+128=2−1±11
This results in:
x=5
x=−6. However, the positive solution x=4 can be taken as it fits the inequality from the previous part.
Step 5
1.2 Los gelyktydig op vir $x$ en $y$:
97%
117 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
We have two equations:
y+x=12 (1)
xy=14−3x (2)
Substituting equation (1) into (2) gives:
x(12−x)=14−3x
Simplifying results in:
x2−15x+14=0
Factoring gives:
(x−14)(x−1)=0
Thus, the solutions for x are:
x=14⇒y=−2
x=1⇒y=11.
Step 6
1.3 Beskryf die produk $1 \times 2 \times 3 \times 4 \times 30$.
97%
121 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find the largest value of k such that 3k is a factor of the product, we first calculate:
1×2×3×4×30=1×2×3×4×(3×10)
Counting the factors of 3:
From 3: 1 factor
From 30: 1 factor
Total factors of 3 in the product: 2 (i.e., 32).
Thus, the largest value of k is 2.