Photo AI

1.1 Los op vir x: 1.1.1 $x^2 + 5x - 6 = 0$ 1.1.2 $4x^2 + 3x - 5 = 0$ (korrek tot TWEE desimale plekke) 1.1.3 $4x^2 - 1 < 0 $ 1.1.4 $\left( \sqrt{32} + x \right) \left( \sqrt{32} - x \right) = x$ 1.2 Los gelyktydig op vir $x$ en $y$: $y + x = 12$ en $xy = 14 - 3x$ 1.3 Beskryf die produk $1 \times 2 \times 3 \times 4 \times 30.$ Bepaal die grootste waarde van $k$ sodat $3^k$ 'n faktor van die produk is. - NSC Mathematics - Question 1 - 2019 - Paper 1

Question icon

Question 1

1.1-Los-op-vir-x:--1.1.1--$x^2-+-5x---6-=-0$--1.1.2--$4x^2-+-3x---5-=-0$-(korrek-tot-TWEE-desimale-plekke)--1.1.3--$4x^2---1-<-0-$--1.1.4--$\left(-\sqrt{32}-+-x-\right)-\left(-\sqrt{32}---x-\right)-=-x$--1.2-Los-gelyktydig-op-vir-$x$-en-$y$:--$y-+-x-=-12$--en--$xy-=-14---3x$--1.3-Beskryf-die-produk-$1-\times-2-\times-3-\times-4-\times-30.$-Bepaal-die-grootste-waarde-van-$k$-sodat-$3^k$-'n-faktor-van-die-produk-is.-NSC Mathematics-Question 1-2019-Paper 1.png

1.1 Los op vir x: 1.1.1 $x^2 + 5x - 6 = 0$ 1.1.2 $4x^2 + 3x - 5 = 0$ (korrek tot TWEE desimale plekke) 1.1.3 $4x^2 - 1 < 0 $ 1.1.4 $\left( \sqrt{32} + x \rig... show full transcript

Worked Solution & Example Answer:1.1 Los op vir x: 1.1.1 $x^2 + 5x - 6 = 0$ 1.1.2 $4x^2 + 3x - 5 = 0$ (korrek tot TWEE desimale plekke) 1.1.3 $4x^2 - 1 < 0 $ 1.1.4 $\left( \sqrt{32} + x \right) \left( \sqrt{32} - x \right) = x$ 1.2 Los gelyktydig op vir $x$ en $y$: $y + x = 12$ en $xy = 14 - 3x$ 1.3 Beskryf die produk $1 \times 2 \times 3 \times 4 \times 30.$ Bepaal die grootste waarde van $k$ sodat $3^k$ 'n faktor van die produk is. - NSC Mathematics - Question 1 - 2019 - Paper 1

Step 1

1.1.1 $x^2 + 5x - 6 = 0$

96%

114 rated

Answer

To solve the quadratic equation, we can factor it as:

(x+6)(x1)=0(x + 6)(x - 1) = 0

Setting each factor to zero gives:

  1. x+6=0x=6x + 6 = 0 \Rightarrow x = -6
  2. x1=0x=1x - 1 = 0 \Rightarrow x = 1

Step 2

1.1.2 $4x^2 + 3x - 5 = 0$ (korrek tot TWEE desimale plekke)

99%

104 rated

Answer

Using the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} where a=4a = 4, b=3b = 3, and c=5c = -5.

Substituting gives:

x=3±324(4)(5)2(4)x = \frac{-3 \pm \sqrt{3^2 - 4(4)(-5)}}{2(4)}

Calculating the discriminant:

=3±9+808=3±898= \frac{-3 \pm \sqrt{9 + 80}}{8} = \frac{-3 \pm \sqrt{89}}{8}

Thus, the two solutions are approximately:

  1. x=1.55x = -1.55
  2. x=0.80x = 0.80

Step 3

1.1.3 $4x^2 - 1 < 0 $

96%

101 rated

Answer

We can rearrange this inequality as:

4x2<14x^2 < 1

Dividing both sides by 4 results in:

x2<14x^2 < \frac{1}{4}

Taking the square root gives:

12<x<12-\frac{1}{2} < x < \frac{1}{2}

Step 4

1.1.4 $\left( \sqrt{32} + x \right) \left( \sqrt{32} - x \right) = x$

98%

120 rated

Answer

Expanding the left side gives:

32x2=x32 - x^2 = x

Rearranging leads to:

x2+x32=0x^2 + x - 32 = 0

Using the quadratic formula:

x=1±1+1282=1±112x = \frac{-1 \pm \sqrt{1 + 128}}{2} = \frac{-1 \pm 11}{2}

This results in:

  1. x=5x = 5
  2. x=6x = -6. However, the positive solution x=4x = 4 can be taken as it fits the inequality from the previous part.

Step 5

1.2 Los gelyktydig op vir $x$ en $y$:

97%

117 rated

Answer

We have two equations:

  1. y+x=12y + x = 12 (1)
  2. xy=143xxy = 14 - 3x (2)

Substituting equation (1) into (2) gives:

x(12x)=143xx(12 - x) = 14 - 3x

Simplifying results in:

x215x+14=0x^2 - 15x + 14 = 0

Factoring gives:

(x14)(x1)=0(x - 14)(x - 1) = 0

Thus, the solutions for xx are:

  1. x=14y=2x = 14 \Rightarrow y = -2
  2. x=1y=11x = 1 \Rightarrow y = 11.

Step 6

1.3 Beskryf die produk $1 \times 2 \times 3 \times 4 \times 30$.

97%

121 rated

Answer

To find the largest value of kk such that 3k3^k is a factor of the product, we first calculate:

1×2×3×4×30=1×2×3×4×(3×10)1 \times 2 \times 3 \times 4 \times 30 = 1 \times 2 \times 3 \times 4 \times (3 \times 10)

Counting the factors of 3:

  • From 3: 1 factor
  • From 30: 1 factor

Total factors of 3 in the product: 22 (i.e., 323^2). Thus, the largest value of kk is 22.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;