Photo AI

Los op vir $x$: 1.1.1 $(x-3)(x+1) = 0$ 1.1.2 $\\sqrt{x} = 512$ 1.1.3 $x(x-4) < 0$ Gegee: $f(x) = x^2 - 5x + 2$ 1.2.1 Los op vir $x$ as $f(x) = 0$ 1.2.2 Vir watter waardes van $c$ sal $f(c) = c$ geen reële wortels hê nie? Los op vir $x$ en $y$: $x = 2y + 2$ $x^2 - 2xy + 3y^2 = 4$ 1.4 Bereken die maksimum waarde van $S$ as $S = \frac{6}{x^2 + 2}$. - NSC Mathematics - Question 1 - 2017 - Paper 1

Question icon

Question 1

Los-op-vir-$x$:--1.1.1--$(x-3)(x+1)-=-0$--1.1.2--$\\sqrt{x}-=-512$--1.1.3--$x(x-4)-<-0$--Gegee:-$f(x)-=-x^2---5x-+-2$--1.2.1--Los-op-vir-$x$-as-$f(x)-=-0$--1.2.2--Vir-watter-waardes-van-$c$-sal-$f(c)-=-c$-geen-reële-wortels-hê-nie?--Los-op-vir-$x$-en-$y$:-$x-=-2y-+-2$-$x^2---2xy-+-3y^2-=-4$--1.4--Bereken-die-maksimum-waarde-van-$S$-as-$S-=-\frac{6}{x^2-+-2}$.-NSC Mathematics-Question 1-2017-Paper 1.png

Los op vir $x$: 1.1.1 $(x-3)(x+1) = 0$ 1.1.2 $\\sqrt{x} = 512$ 1.1.3 $x(x-4) < 0$ Gegee: $f(x) = x^2 - 5x + 2$ 1.2.1 Los op vir $x$ as $f(x) = 0$ 1.2.2 Vi... show full transcript

Worked Solution & Example Answer:Los op vir $x$: 1.1.1 $(x-3)(x+1) = 0$ 1.1.2 $\\sqrt{x} = 512$ 1.1.3 $x(x-4) < 0$ Gegee: $f(x) = x^2 - 5x + 2$ 1.2.1 Los op vir $x$ as $f(x) = 0$ 1.2.2 Vir watter waardes van $c$ sal $f(c) = c$ geen reële wortels hê nie? Los op vir $x$ en $y$: $x = 2y + 2$ $x^2 - 2xy + 3y^2 = 4$ 1.4 Bereken die maksimum waarde van $S$ as $S = \frac{6}{x^2 + 2}$. - NSC Mathematics - Question 1 - 2017 - Paper 1

Step 1

1.1.1 Los op vir $x$ as $(x-3)(x+1) = 0$

96%

114 rated

Answer

The solutions to the equation are found by setting each factor to zero:

  1. x3=0x=3x - 3 = 0 \Rightarrow x = 3
  2. x+1=0x=1x + 1 = 0 \Rightarrow x = -1

Thus, the solutions are x=3x = 3 or x=1x = -1.

Step 2

1.1.2 Los op vir $x$ as $\sqrt{x} = 512$

99%

104 rated

Answer

To solve for xx, we square both sides:

x=(512)2x = (512)^2

Calculating, we find:

x=262144x = 262144

Therefore, x=64x = 64.

Step 3

1.1.3 Los op vir $x$ as $x(x - 4) < 0$

96%

101 rated

Answer

To solve the inequality, we first find the critical values by setting the equation to zero:

  1. x(x4)=0x(x - 4) = 0 gives us x=0x = 0 and x=4x = 4.

Next, we test intervals to determine where the product is negative:

  • For x<0x < 0, both factors are negative, hence positive product.
  • For 0<x<40 < x < 4, the product is negative.
  • For x>4x > 4, both factors are positive, hence positive product.

Thus, the solution is 0<x<40 < x < 4.

Step 4

1.2.1 Los op vir $x$ as $f(x) = x^2 - 5x + 2 = 0$

98%

120 rated

Answer

Using the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} where a=1a = 1, b=5b = -5, and c=2c = 2:

x=5±(5)24(1)(2)2(1)x = \frac{5 \pm \sqrt{(-5)^2 - 4(1)(2)}}{2(1)}

Calculating the discriminant: b24ac=258=17b^2 - 4ac = 25 - 8 = 17

Thus, the solutions are:

x=5±172x = \frac{5 \pm \sqrt{17}}{2} This gives approximate values:

  1. x4.56x \approx 4.56
  2. x0.44x \approx 0.44.

Step 5

1.2.2 Vir watter waardes van $c$ sal $f(c) = c$ geen reële wortels hê nie?

97%

117 rated

Answer

To find the values of cc such that f(c)c=0f(c) - c = 0 leads to no real roots:

c25c+2c=0c26c+2=0c^2 - 5c + 2 - c = 0\Rightarrow c^2 - 6c + 2 = 0 Using the discriminant: D=b24ac=(6)24(1)(2)=368=28>0.D = b^2 - 4ac = (-6)^2 - 4(1)(2) = 36 - 8 = 28 > 0.

Thus, there are always roots for all values of cc. Therefore, the question becomes irrelevant when analyzing the discriminant, ensuring that for certain conditions on the coefficients, c26c+2c^2 - 6c + 2 should hold negative discriminant ensuring no real roots.

Step 6

1.3 Los op vir $x$ en $y$: $x = 2y + 2$, $x^2 - 2xy + 3y^2 = 4$

97%

121 rated

Answer

Substituting x=2y+2x = 2y + 2 into the second equation:

(2y+2)22(2y+2)y+3y2=4(2y + 2)^2 - 2(2y + 2)y + 3y^2 = 4

Expanding the equation:

4y2+8y+4(4y2+4y+6y2)=44y^2 + 8y + 4 - (4y^2 + 4y + 6y^2) =4

This simplifies to: (1y23y+4=4)y23y=0y(y3)=0y=0ory=3(1y^2 - 3y + 4 = 4)\Rightarrow y^2 - 3y = 0\Rightarrow y(y - 3) = 0\Rightarrow y = 0 or y = 3

Now substituting back to find xx:

  1. When y=0y = 0, x=2(0)+2=2x = 2(0) + 2 = 2.
  2. When y=3y = 3, x=2(3)+2=8x = 2(3) + 2 = 8.

Thus, (x,y)(x,y) pairs are (2,0)(2,0) and (8,3)(8,3).

Step 7

1.4 Bereken die maksimum waarde van $S$ as $S = \frac{6}{x^2 + 2}$

96%

114 rated

Answer

To find the maximum of SS, we rewrite it:

S=6(x2+2)1S = 6(x^2 + 2)^{-1}

To maximize SS, we minimize x2+2x^2 + 2. Since x2+22x^2 + 2 \geq 2 for all xx, then the minimum occurs at x2=0x^2=0. Thus, the maximum value of:

Smax=62=3.S_{max} = \frac{6}{2} = 3.

Therefore, the maximum value of SS is 3.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;