Los op vir $x$:
1.1.1
$x^2 - 7x + 12 = 0$
1.1.2
$x(3x + 5) = 1$
(korrekt tot TWEE desimale syfers)
1.1.3
$x^2 - 2x + 15$
1.1.4
$
ext{ }
\\sqrt{2(1-x)} = x - 1
$
1.2 Los gelikdtyd vir $x$ en $y$ op:
$3^{x+y} = 27$
$ x^2 + y^2 = 17$
1.3 Bepaal, sonder die gebruik van 'n sakrekenaar, die waarde van:
$rac{1}{
ext{ }
ext{ }
ext{ }
ext{ }
ext{ }
ext{ }
ext{ }
ext{ }
ext{ }
\\sqrt{1 + \rac{1}{2}} + \rac{1}{
ext{ }
\sqrt{2 + \sqrt{3}} + \rac{1}{
ext{ }
\sqrt{3 + \sqrt{4}} + .. - NSC Mathematics - Question 1 - 2023 - Paper 1
Question 1
Los op vir $x$:
1.1.1
$x^2 - 7x + 12 = 0$
1.1.2
$x(3x + 5) = 1$
(korrekt tot TWEE desimale syfers)
1.1.3
$x^2 - 2x + 15$
1.1.4
$
ext{ }
\\sqrt{2(1-x)} = ... show full transcript
Worked Solution & Example Answer:Los op vir $x$:
1.1.1
$x^2 - 7x + 12 = 0$
1.1.2
$x(3x + 5) = 1$
(korrekt tot TWEE desimale syfers)
1.1.3
$x^2 - 2x + 15$
1.1.4
$
ext{ }
\\sqrt{2(1-x)} = x - 1
$
1.2 Los gelikdtyd vir $x$ en $y$ op:
$3^{x+y} = 27$
$ x^2 + y^2 = 17$
1.3 Bepaal, sonder die gebruik van 'n sakrekenaar, die waarde van:
$rac{1}{
ext{ }
ext{ }
ext{ }
ext{ }
ext{ }
ext{ }
ext{ }
ext{ }
ext{ }
\\sqrt{1 + \rac{1}{2}} + \rac{1}{
ext{ }
\sqrt{2 + \sqrt{3}} + \rac{1}{
ext{ }
\sqrt{3 + \sqrt{4}} + .. - NSC Mathematics - Question 1 - 2023 - Paper 1
Step 1
1.1.1
$x^2 - 7x + 12 = 0$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve the quadratic equation x2−7x+12=0, we will factor it:
Find the factors of 12 that add up to -7, which are -3 and -4.
Rewrite the equation as ((x - 3)(x - 4) = 0).
Set each factor equal to zero: x−3=0 or x−4=0.
Therefore, the solutions are x=3 and x=4.
Step 2
1.1.2
$x(3x + 5) = 1$
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve for x:
Rearrange to standard form: 3x2+5x−1=0.
Use the quadratic formula: x=2a−b±b2−4ac,
where a=3, b=5, and c=−1.
Calculate the discriminant: b2−4ac=52−4(3)(−1)=25+12=37.
Substitute into the formula:
x=2(3)−5±37=6−5±37.
The approximate solutions are x≈−0.18 and x≈−1.85.
Step 3
1.1.3
$x^2 - 2x + 15$
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To analyze this quadratic:
Rewrite in standard form: x2−2x+15.
Calculate vertices or check for real roots by using the discriminant: b2−4ac=22−4(1)(15)=4−60=−56. Since the discriminant is negative, there are no real roots.
Step 4
1.1.4
$\sqrt{2(1-x)} = x - 1$
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve the equation:
Square both sides: 2(1−x)=(x−1)2.
Expand and simplify:
2−2x=x2−2x+1.
Rearrange to standard form: x2−1=0.
Factor: (x+1)(x−1)=0.
Solutions are x=1 and x=−1.
Step 5
1.2
$3^{x+y} = 27$ en $x^2 + y^2 = 17$
97%
117 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
From the first equation, write 27 as 33: 3x+y=33, hence x+y=3.
Substitute y=3−x into the second equation:
x2+(3−x)2=17.
Expanding gives x2+9−6x+x2=17 leading to 2x2−6x−8=0.
Dividing everything by 2 gives: x2−3x−4=0. Solving this quadratic: (x−4)(x+1)=0.