Photo AI

Los op vir $x$: 1.1.1 $x^2 - 7x + 12 = 0$ 1.1.2 $x(3x + 5) = 1$ (korrekt tot TWEE desimale syfers) 1.1.3 $x^2 - 2x + 15$ 1.1.4 $ ext{ } \\sqrt{2(1-x)} = x - 1 $ 1.2 Los gelikdtyd vir $x$ en $y$ op: $3^{x+y} = 27$ $ x^2 + y^2 = 17$ 1.3 Bepaal, sonder die gebruik van 'n sakrekenaar, die waarde van: $ rac{1}{ ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } \\sqrt{1 + \ rac{1}{2}} + \ rac{1}{ ext{ } \sqrt{2 + \sqrt{3}} + \ rac{1}{ ext{ } \sqrt{3 + \sqrt{4}} + .. - NSC Mathematics - Question 1 - 2023 - Paper 1

Question icon

Question 1

Los-op-vir-$x$:--1.1.1-$x^2---7x-+-12-=-0$----1.1.2-$x(3x-+-5)-=-1$---(korrekt-tot-TWEE-desimale-syfers)--1.1.3-$x^2---2x-+-15$----1.1.4-$--ext{-}--\\sqrt{2(1-x)}-=-x---1---$--1.2-Los-gelikdtyd-vir-$x$-en-$y$-op:--$3^{x+y}-=-27$---$-x^2-+-y^2-=-17$--1.3-Bepaal,-sonder-die-gebruik-van-'n-sakrekenaar,-die-waarde-van:-$-rac{1}{--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--\\sqrt{1-+-\-rac{1}{2}}-+-\-rac{1}{--ext{-}-\sqrt{2-+-\sqrt{3}}-+-\-rac{1}{--ext{-}-\sqrt{3-+-\sqrt{4}}-+-..-NSC Mathematics-Question 1-2023-Paper 1.png

Los op vir $x$: 1.1.1 $x^2 - 7x + 12 = 0$ 1.1.2 $x(3x + 5) = 1$ (korrekt tot TWEE desimale syfers) 1.1.3 $x^2 - 2x + 15$ 1.1.4 $ ext{ } \\sqrt{2(1-x)} = ... show full transcript

Worked Solution & Example Answer:Los op vir $x$: 1.1.1 $x^2 - 7x + 12 = 0$ 1.1.2 $x(3x + 5) = 1$ (korrekt tot TWEE desimale syfers) 1.1.3 $x^2 - 2x + 15$ 1.1.4 $ ext{ } \\sqrt{2(1-x)} = x - 1 $ 1.2 Los gelikdtyd vir $x$ en $y$ op: $3^{x+y} = 27$ $ x^2 + y^2 = 17$ 1.3 Bepaal, sonder die gebruik van 'n sakrekenaar, die waarde van: $ rac{1}{ ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } \\sqrt{1 + \ rac{1}{2}} + \ rac{1}{ ext{ } \sqrt{2 + \sqrt{3}} + \ rac{1}{ ext{ } \sqrt{3 + \sqrt{4}} + .. - NSC Mathematics - Question 1 - 2023 - Paper 1

Step 1

1.1.1 $x^2 - 7x + 12 = 0$

96%

114 rated

Answer

To solve the quadratic equation x27x+12=0x^2 - 7x + 12 = 0, we will factor it:

  1. Find the factors of 12 that add up to -7, which are -3 and -4.
  2. Rewrite the equation as ((x - 3)(x - 4) = 0).
  3. Set each factor equal to zero: x3=0x - 3 = 0 or x4=0x - 4 = 0.
  4. Therefore, the solutions are x=3x = 3 and x=4x = 4.

Step 2

1.1.2 $x(3x + 5) = 1$

99%

104 rated

Answer

To solve for xx:

  1. Rearrange to standard form: 3x2+5x1=03x^2 + 5x - 1 = 0.
  2. Use the quadratic formula: x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=3a = 3, b=5b = 5, and c=1c = -1.
  3. Calculate the discriminant: b24ac=524(3)(1)=25+12=37b^2 - 4ac = 5^2 - 4(3)(-1) = 25 + 12 = 37.
  4. Substitute into the formula: x=5±372(3)=5±376x = \frac{-5 \pm \sqrt{37}}{2(3)} = \frac{-5 \pm \sqrt{37}}{6}.
  5. The approximate solutions are x0.18x \approx -0.18 and x1.85x \approx -1.85.

Step 3

1.1.3 $x^2 - 2x + 15$

96%

101 rated

Answer

To analyze this quadratic:

  1. Rewrite in standard form: x22x+15x^2 - 2x + 15.
  2. Calculate vertices or check for real roots by using the discriminant: b24ac=224(1)(15)=460=56b^2 - 4ac = 2^2 - 4(1)(15) = 4 - 60 = -56. Since the discriminant is negative, there are no real roots.

Step 4

1.1.4 $\sqrt{2(1-x)} = x - 1$

98%

120 rated

Answer

To solve the equation:

  1. Square both sides: 2(1x)=(x1)22(1-x) = (x - 1)^2.
  2. Expand and simplify: 22x=x22x+12 - 2x = x^2 - 2x + 1.
  3. Rearrange to standard form: x21=0x^2 - 1 = 0.
  4. Factor: (x+1)(x1)=0(x + 1)(x - 1) = 0.
  5. Solutions are x=1x = 1 and x=1x = -1.

Step 5

1.2 $3^{x+y} = 27$ en $x^2 + y^2 = 17$

97%

117 rated

Answer

  1. From the first equation, write 2727 as 333^3: 3x+y=333^{x+y} = 3^3, hence x+y=3x + y = 3.
  2. Substitute y=3xy = 3 - x into the second equation: x2+(3x)2=17x^2 + (3-x)^2 = 17.
  3. Expanding gives x2+96x+x2=17x^2 + 9 - 6x + x^2 = 17 leading to 2x26x8=02x^2 - 6x - 8 = 0.
  4. Dividing everything by 2 gives: x23x4=0x^2 - 3x - 4 = 0. Solving this quadratic: (x4)(x+1)=0(x - 4)(x + 1) = 0.
  5. Therefore, x=4x = 4 or x=1x = -1, leading to y=1y= -1 or y=4y = 4.

Step 6

1.3 $ rac{1}{ ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } \\sqrt{1 + \ rac{1}{2}} + ... + \ rac{1}{ ext{ } \sqrt{100}}$

97%

121 rated

Answer

To evaluate:

  1. The general term is written as 1n\frac{1}{\sqrt{n}}.
  2. Recognizing the series structure: Rationalize each term and simplify: 1+12\sqrt{1 + \frac{1}{2}} progressively till 99+1100\sqrt{99} + \frac{1}{\sqrt{100}}.
  3. Through calculation, combine the results giving =1+23+=9= -1 + \sqrt{2} - \sqrt{3} + \cdots = 9.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;