To find the derivative f′(x) from first principles using the definition:
f′(x)=limh→0hf(x+h)−f(x)
Substituting f(x)=3x2:
f′(x)=limh→0h3(x+h)2−3x2
Expanding the expression:
f′(x)=limh→0h3(x2+2xh+h2)−3x2
Simplifying:
f′(x)=limh→0h3(2xh+h2)
Cancelling h from the numerator and denominator:
f′(x)=limh→03(2x+h)=6x