Photo AI

8.1 Gegee $f(x)=3-2x^2$: Bepaal $f'(x)$, vanuit eerste beginsels - NSC Mathematics - Question 8 - 2017 - Paper 1

Question icon

Question 8

8.1-Gegee-$f(x)=3-2x^2$:-Bepaal-$f'(x)$,-vanuit-eerste-beginsels-NSC Mathematics-Question 8-2017-Paper 1.png

8.1 Gegee $f(x)=3-2x^2$: Bepaal $f'(x)$, vanuit eerste beginsels. 8.2 Bepaal $\frac{dy}{dx}$ as $y=\frac{12x^2+2x+1}{6x}$. 8.3 Die funksie $f(x)=x^3+bx^2+cx-4$ het... show full transcript

Worked Solution & Example Answer:8.1 Gegee $f(x)=3-2x^2$: Bepaal $f'(x)$, vanuit eerste beginsels - NSC Mathematics - Question 8 - 2017 - Paper 1

Step 1

Bepaal $f'(x)$, vanuit eerste beginsels.

96%

114 rated

Answer

To find the derivative f(x)f'(x) from first principles, we use the limit definition:

f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}

  1. Compute f(x+h)f(x+h): f(x+h)=32(x+h)2=32(x2+2xh+h2)=32x24xh2h2f(x+h) = 3 - 2(x+h)^2 = 3 - 2(x^2 + 2xh + h^2) = 3 - 2x^2 - 4xh - 2h^2

  2. Substitute in the limit: f(x)=limh0(32x24xh2h2)(32x2)hf'(x) = \lim_{h \to 0} \frac{(3 - 2x^2 - 4xh - 2h^2) - (3 - 2x^2)}{h}

  3. Simplify: f(x)=limh04xh2h2h=limh0(4x2h)=4xf'(x) = \lim_{h \to 0} \frac{-4xh - 2h^2}{h} = \lim_{h \to 0} (-4x - 2h) = -4x

Thus, f(x)=4xf'(x) = -4x.

Step 2

Bepaal $\frac{dy}{dx}$ as $y=\frac{12x^2+2x+1}{6x}$.

99%

104 rated

Answer

To differentiate the function, we apply the quotient rule:

y=12x2+2x+16xy = \frac{12x^2 + 2x + 1}{6x}

  1. First, simplify the expression: y=12x26x+2x6x+16x=2x+13+16xy = \frac{12x^2}{6x} + \frac{2x}{6x} + \frac{1}{6x} = 2x + \frac{1}{3} + \frac{1}{6x}

  2. Now differentiate: dydx=216x2\frac{dy}{dx} = 2 - \frac{1}{6x^2}

Therefore, dydx=216x2\frac{dy}{dx} = 2 - \frac{1}{6x^2}.

Step 3

Bereken die waardes van $b$ en $c$.

96%

101 rated

Answer

Given the function f(x)=x3+bx2+cx4f(x) = x^3 + bx^2 + cx - 4, we find the values of bb and cc at the point of inflection (2;4)(2; 4):

  1. Calculate the first derivative: f(x)=3x2+2bx+cf'(x) = 3x^2 + 2bx + c At the point of inflection, set f(2)=0f'(2) = 0: 3(2)2+2b(2)+c=03(2)^2 + 2b(2) + c = 0 12+4b+c=012 + 4b + c = 0 (Equation 1)

  2. Calculate f(2)f(2) to ensure it equals 4: f(2)=(2)3+b(2)2+c(2)4=4f(2) = (2)^3 + b(2)^2 + c(2) - 4 = 4 8+4b+2c4=48 + 4b + 2c - 4 = 4 4+4b+2c=44 + 4b + 2c = 4 4b+2c=04b + 2c = 0 (Equation 2)

  3. Solve the system of equations: From Equation 2: 2b+c=02b + c = 0, so c=2bc = -2b. Substitute into Equation 1:

ightarrow 12 + 2b = 0$$

ightarrow b = -6$$ Substitute $b$ back to find $c$: $$c = -2(-6) = 12$$ Thus, the values are $b = -6$ and $c = 12$.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;