Photo AI

Los op vir $x$: 1.1.1 $x^2 + 2x - 15 = 0$ (3) 1.1.2 $5x^2 - x - 9 = 0$ (Los jou antwoord korrek tot TWEE desimale syfers.) (4) 1.1.3 $x^2 \, \leq \, 3x$ (4) 1.2 Gegee: $\frac{a + 64}{a} = 16$ (3) 1.2.1 Los op vir $a$ - NSC Mathematics - Question 1 - 2022 - Paper 1

Question icon

Question 1

Los-op-vir-$x$:--1.1.1-$x^2-+-2x---15-=-0$-(3)--1.1.2-$5x^2---x---9-=-0$-(Los-jou-antwoord-korrek-tot-TWEE-desimale-syfers.)-(4)--1.1.3-$x^2-\,-\leq-\,-3x$-(4)--1.2-Gegee:-$\frac{a-+-64}{a}-=-16$-(3)--1.2.1-Los-op-vir-$a$-NSC Mathematics-Question 1-2022-Paper 1.png

Los op vir $x$: 1.1.1 $x^2 + 2x - 15 = 0$ (3) 1.1.2 $5x^2 - x - 9 = 0$ (Los jou antwoord korrek tot TWEE desimale syfers.) (4) 1.1.3 $x^2 \, \leq \, 3x$ (4) 1.2 ... show full transcript

Worked Solution & Example Answer:Los op vir $x$: 1.1.1 $x^2 + 2x - 15 = 0$ (3) 1.1.2 $5x^2 - x - 9 = 0$ (Los jou antwoord korrek tot TWEE desimale syfers.) (4) 1.1.3 $x^2 \, \leq \, 3x$ (4) 1.2 Gegee: $\frac{a + 64}{a} = 16$ (3) 1.2.1 Los op vir $a$ - NSC Mathematics - Question 1 - 2022 - Paper 1

Step 1

1.1.1 Los op vir $x$: $x^2 + 2x - 15 = 0$

96%

114 rated

Answer

To solve the quadratic equation x2+2x15=0x^2 + 2x - 15 = 0, we can factor it as follows:

(x+5)(x3)=0(x + 5)(x - 3) = 0

Setting each factor equal to zero gives:

x+5=0x=5x + 5 = 0 \Rightarrow x = -5 x3=0x=3x - 3 = 0 \Rightarrow x = 3

Thus, the solutions for xx are x=5x = -5 or x=3x = 3.

Step 2

1.1.2 Los op vir $x$: $5x^2 - x - 9 = 0$

99%

104 rated

Answer

Using the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} where a=5a = 5, b=1b = -1, and c=9c = -9:

  1. Calculate the discriminant: Δ=(1)245(9)=1+180=181\Delta = (-1)^2 - 4 \cdot 5 \cdot (-9) = 1 + 180 = 181

  2. Substitute into the formula: x=(1)±18125=1±18110x = \frac{-(-1) \pm \sqrt{181}}{2 \cdot 5} = \frac{1 \pm \sqrt{181}}{10}

Calculating the two potential values for xx gives us:

  1. x=1+181101.45x = \frac{1 + \sqrt{181}}{10} \approx 1.45
  2. x=1181101.25x = \frac{1 - \sqrt{181}}{10} \approx -1.25

Therefore, the solutions for xx are approximately x=1.45x = 1.45 and x=1.25x = -1.25.

Step 3

1.1.3 Los op vir $x$: $x^2 \leq 3x$

96%

101 rated

Answer

Rearranging the equation gives:

x23x0x^2 - 3x \leq 0

We can factor it:

(x)(x3)0(x)(x - 3)\leq 0

The critical points are x=0x = 0 and x=3x = 3. To find the intervals where the inequality holds, we check the signs:

  • For x<0x < 0: both factors are negative, so the product is positive.
  • For 0<x<30 < x < 3: the first factor is positive and the second is negative, hence the product is negative.
  • For x=3x = 3: the product is 00.
  • For x>3x > 3: both factors are positive, so the product is positive.

Thus, the solution set is:

0x30 \leq x \leq 3

Step 4

1.2.1 Los op vir $a$: $\frac{a + 64}{a} = 16$

98%

120 rated

Answer

To solve for aa, we start by multiplying both sides by aa to eliminate the fraction:

a+64=16aa + 64 = 16a

Rearranging gives:

64=16aa64 = 16a - a

Thus:

64=15a64 = 15a

Finally, dividing both sides by 1515:

a=6415a = \frac{64}{15}

Step 5

1.2.2 Los vervolgens op vir $x$: $2^x + 2^{6x} = 16$

97%

117 rated

Answer

Rewriting 1616 as a power of 22 gives:

16=2416 = 2^4

The equation becomes:

2x+26x=242^x + 2^{6x} = 2^4

For simplification, we can express 26x2^{6x} as (2x)6(2^x)^6:

Letting y=2xy = 2^x, we have:

y+y6=24y + y^6 = 2^4

To solve for yy, this can be rewritten as:

y6+y16=0y^6 + y - 16 = 0

Finding the solution for yy gives:

y=2    2x=2    x=1y = 2 \implies 2^x = 2 \implies x = 1

Step 6

1.3 Sonder die gebruik van 'n sakrekenaar, bereken die waarde van $\sqrt{\frac{2^{1002} + 2^{1006}}{17(2)^{99}}}$

97%

121 rated

Answer

First, simplify the expression in the square root:

21002+21006=21002(1+24)=21002(1+16)=17210022^{1002} + 2^{1006} = 2^{1002}(1 + 2^4) = 2^{1002}(1 + 16) = 17 \cdot 2^{1002}

So, we now have:

172100217299=21002299=23=8=23/2=22\sqrt{\frac{17 \cdot 2^{1002}}{17 \cdot 2^{99}}} = \sqrt{\frac{2^{1002}}{2^{99}}} = \sqrt{2^3} = \sqrt{8} = 2^{3/2} = 2\sqrt{2}

Step 7

1.4 Los gelijktydig vir $x$ en $y$ op: $2x - y = 2$ en $\frac{1}{x} - 3y = 1$

96%

114 rated

Answer

From 2xy=22x - y = 2, we can express yy in terms of xx:

y=2x2y = 2x - 2

Substituting this expression into the second equation 1x3y=1\frac{1}{x} - 3y = 1 gives:

1x3(2x2)=1\frac{1}{x} - 3(2x - 2) = 1

Simplifying leads to:

1x6x+6=1\frac{1}{x} - 6x + 6 = 1

Rearranging gives:

1x6x+5=0\frac{1}{x} - 6x + 5 = 0

Multiplying through by xx:

16x2+5x=01 - 6x^2 + 5x = 0

Thus it becomes:

6x25x1=06x^2 - 5x - 1 = 0

Using the quadratic formula:

x=5±(5)24(6)(1)2(6)x = \frac{5 \pm \sqrt{(-5)^2 - 4(6)(-1)}}{2(6)}

This gives us the values for xx. After finding xx, substitute back to find yy. The values will be: x=16x = \frac{1}{6} or x=1x = 1.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;