Photo AI

1.1 Solve for x: 1.1.1 $x^2 - 7x + 12 = 0$ 1.1.2 $x(3x + 5) = 1$ (correct to TWO decimal places) 1.1.3 $x^2 < -2x + 15$ 1.1.4 $\sqrt{2(1 - x)} = x - 1$ 1.2 Solve for x and y simultaneously: $3^y = 27$ and $x^2 + y^2 = 17$ 1.3 Determine, without the use of a calculator, the value of: $\frac{1}{\sqrt{1 + \frac{1}{2}}} + \frac{1}{\sqrt{2 + \frac{1}{3}}} + \frac{1}{\sqrt{3 + \frac{1}{4}}} + .. - NSC Mathematics - Question 1 - 2023 - Paper 1

Question icon

Question 1

1.1-Solve-for-x:--1.1.1--$x^2---7x-+-12-=-0$----1.1.2--$x(3x-+-5)-=-1$--(correct-to-TWO-decimal-places)----1.1.3--$x^2-<--2x-+-15$----1.1.4--$\sqrt{2(1---x)}-=-x---1$--1.2-Solve-for-x-and-y-simultaneously:-$3^y-=-27$---and---$x^2-+-y^2-=-17$----1.3-Determine,-without-the-use-of-a-calculator,-the-value-of:-$\frac{1}{\sqrt{1-+-\frac{1}{2}}}-+-\frac{1}{\sqrt{2-+-\frac{1}{3}}}-+-\frac{1}{\sqrt{3-+-\frac{1}{4}}}-+-..-NSC Mathematics-Question 1-2023-Paper 1.png

1.1 Solve for x: 1.1.1 $x^2 - 7x + 12 = 0$ 1.1.2 $x(3x + 5) = 1$ (correct to TWO decimal places) 1.1.3 $x^2 < -2x + 15$ 1.1.4 $\sqrt{2(1 - x)} = x - 1... show full transcript

Worked Solution & Example Answer:1.1 Solve for x: 1.1.1 $x^2 - 7x + 12 = 0$ 1.1.2 $x(3x + 5) = 1$ (correct to TWO decimal places) 1.1.3 $x^2 < -2x + 15$ 1.1.4 $\sqrt{2(1 - x)} = x - 1$ 1.2 Solve for x and y simultaneously: $3^y = 27$ and $x^2 + y^2 = 17$ 1.3 Determine, without the use of a calculator, the value of: $\frac{1}{\sqrt{1 + \frac{1}{2}}} + \frac{1}{\sqrt{2 + \frac{1}{3}}} + \frac{1}{\sqrt{3 + \frac{1}{4}}} + .. - NSC Mathematics - Question 1 - 2023 - Paper 1

Step 1

1.1.1 $x^2 - 7x + 12 = 0$

96%

114 rated

Answer

To solve the quadratic equation, we can factor it:

(x3)(x4)=0(x - 3)(x - 4) = 0

From this, the solutions are:

  • x=3x = 3
  • x=4x = 4

Step 2

1.1.2 $x(3x + 5) = 1$ (correct to TWO decimal places)

99%

104 rated

Answer

Rearranging the equation gives us:

3x2+5x1=03x^2 + 5x - 1 = 0

Using the quadratic formula:

x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

where a=3,b=5,c=1a = 3, b = 5, c = -1:

  1. Calculate the discriminant:
    • b24ac=524(3)(1)=25+12=37b^2 - 4ac = 5^2 - 4(3)(-1) = 25 + 12 = 37
  2. Substitute into the quadratic formula:
    • x=5±376x = \frac{-5 \pm \sqrt{37}}{6}
  3. This gives two solutions:
    • x0.18x \approx -0.18
    • x1.85x \approx -1.85 (to two decimal places)

Step 3

1.1.3 $x^2 < -2x + 15$

96%

101 rated

Answer

Rearranging gives:

x2+2x15<0 x^2 + 2x - 15 < 0

Factoring, we have:

(x+5)(x3)<0(x + 5)(x - 3) < 0

The critical values are عند x=5x = -5 و x=3x = 3. We analyze the intervals:

  • For x<5x < -5, (x+5<0x + 5 < 0, x3<0x - 3 < 0) => (both negative)
  • For 5<x<3-5 < x < 3, (x+5>0x + 5 > 0, x3<0x - 3 < 0) => (one positive, one negative)
  • For x>3x > 3, (x+5>0x + 5 > 0, x3>0x - 3 > 0) => (both positive) Thus, the solution is:

5<x<3-5 < x < 3.

Step 4

1.1.4 $\sqrt{2(1 - x)} = x - 1$

98%

120 rated

Answer

Squaring both sides:

2(1x)=(x1)22(1 - x) = (x - 1)^2

Expanding gives:

22x=x22x+12 - 2x = x^2 - 2x + 1

Rearranging leads to:

x21=0x^2 - 1 = 0

This factors as:

(x1)(x+1)=0(x - 1)(x + 1) = 0

Thus, the solutions are:

  • x=1x = 1
  • x=1x = -1 We also check these solutions in the original equation to verify if they lie within the valid range.

Step 5

1.2 Solve for x and y simultaneously: $3^y = 27$ and $x^2 + y^2 = 17$

97%

117 rated

Answer

Rewriting 3y=273^y = 27 gives:

y = 3$$ Substituting $y$ into the second equation:

x^2 + 3^2 = 17$$

x^2 + 9 = 17$$ This simplifies to:

x^2 = 8$$ Thus:

x = \pm \sqrt{8} = \pm 2\sqrt{2}$$ The pairs $(x, y)$ are: - $(2\sqrt{2}, 3)$ - $(-2\sqrt{2}, 3)$.

Step 6

1.3 Determine, without the use of a calculator, the value of: $\frac{1}{\sqrt{1 + \frac{1}{2}}} + \frac{1}{\sqrt{2 + \frac{1}{3}}} + \frac{1}{\sqrt{3 + \frac{1}{4}}} + ... + \frac{1}{\sqrt{99 + \frac{1}{100}}}$

97%

121 rated

Answer

This expression is a sum of terms of the form:

1n+1n+1\frac{1}{\sqrt{n + \frac{1}{n+1}}}

First, simplify each term in the series:

  1. Rationalizing gives a general term of: 11+1n=1n+1n=nn+1\frac{1}{\sqrt{1 + \frac{1}{n}}} = \frac{1}{\sqrt{\frac{n + 1}{n}}} = \sqrt{\frac{n}{n + 1}}
  2. The sum converges as: 1 for n=1extto1001 \rightarrow \infty \text{ for } n = 1 ext{ to } 100
  3. Final evaluation leads to the result of: 99

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;