Photo AI

Chris het 'n bonsai (miniatuurboompie) by 'n kwekery gekoop - NSC Mathematics - Question 3 - 2016 - Paper 1

Question icon

Question 3

Chris-het-'n-bonsai-(miniatuurboompie)-by-'n-kwekery-gekoop-NSC Mathematics-Question 3-2016-Paper 1.png

Chris het 'n bonsai (miniatuurboompie) by 'n kwekery gekoop. Toe hy die boompie gekoop het, was sy hoogte 130 mm. Die hoogte van die boompie het daarna toegeneem, so... show full transcript

Worked Solution & Example Answer:Chris het 'n bonsai (miniatuurboompie) by 'n kwekery gekoop - NSC Mathematics - Question 3 - 2016 - Paper 1

Step 1

3.1 In water jaar sal die boompie se hoogte met ongeveer 11,76 mm toeneem?

96%

114 rated

Answer

To determine the increase in height for the seventh year, we first identify the common ratio rr from the given sequence 100, 70, 49:

r=70100=710r = \frac{70}{100} = \frac{7}{10}

Next, we can use the formula for the nthn^{th} term of a geometric sequence:

Tn=arn1T_n = ar^{n-1}

Here, a=100a = 100, and we set:

11.76=100(710)n111.76 = 100\left(\frac{7}{10}\right)^{n-1}

Solving for nn, we first simplify:

0.1176=(710)n10.1176 = \left(\frac{7}{10}\right)^{n-1}

Taking the logarithm of both sides:

(n1)log(0.7)=log(0.1176)(n-1)\log(0.7) = \log(0.1176)

Solving for nn yields:

n=1+log(0.1176)log(0.7)6n = 1 + \frac{\log(0.1176)}{\log(0.7)} \approx 6

Thus, during the 7th year, the increase is approximately 11.76 mm.

Step 2

3.2 Bepaal n formule vir h(n).

99%

104 rated

Answer

The formula for the height h(n)h(n) of the tree can be derived from the geometric sequence:

h(n)=a+Tn=130+100(710)n1h(n) = a + T_n = 130 + 100\left(\frac{7}{10}\right)^{n-1}

Substituting the known values gives:

h(n)=130+100(0.7)n1h(n) = 130 + 100\cdot(0.7)^{n-1}

Step 3

3.3 Watter hoogte sal die boompie uiteindelik bereik?

96%

101 rated

Answer

To find the eventual height of the tree, we look at the limit of the height as nn approaches infinity:

h()=130+100(n=0(710)n1)h(\infty) = 130 + 100\left(\sum_{n=0}^{\infty} \left(\frac{7}{10}\right)^{n-1}\right)

This results in:

h()=130+1301710=130+1300.3=130+433.33=563.33 mm or 563mm.h(\infty) = 130 + \frac{130}{1 - \frac{7}{10}} = 130 + \frac{130}{0.3} = 130 + 433.33 = 563.33 \text{ mm} \text{ or } 563 mm.

Thus, the eventual height of the bonsai tree is approximately 563 mm.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;